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CHARACTERISTICS OF OSCILLATORY FLOW OVER RIPPLE MODELS 
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Syunsuke Ikeda 2   M.ASCE 

ABSTRACT 

The results of extensive laboratory investigations 
on the oscillatory flow over ripple models were 
presented. The ripple models were installed in an 
oscillatory flow flume. A two-dimensional lasser 
doppler velocimeter was utilized to measure the fine 
structure of flows in the vicinity of the whole length 
of a ripple model which was induced by various types of 
oscillatory flow. The results of measurements were 
displayed in the form of distributions of mean fluid 
velocity, stationary velocity, fluid turbulence 
intensity and Reynolds stress. By using these data the 
characteristics of oscillatory flow, such as the 
formation and decay of vortices, the generation of 
stationary velocity and the variation of kinematic eddy 
viscosity were discussed. 
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During the last decade the laser doppler velocimeters 
(LDV) have been adopted together with the data 
acquisition system to display precisely the fields of 
mean velocity and turbulence intensity within the domain 
which was set for the measurement (Du Toit et al.,1980 ; 
Sawamoto et al.,1981 ; Sato, 1987 ; Sleath, 1987). 
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Fig.l Profile of the ripple model, (unitrmm) 

EXPERIMENTAL FACILITIES AND PROCEDURES 

An oscillatory flow flume with 13 m in length and 0.3 
m x 0.3 m in cross-section was used for the laboratory 
experiment, the observation section of which was 2 m 
long and was made of glass except the flume bottom 
(Figure 2). The oscillatory fluid motion was produced 
by a piston driven by a DC-motor, and the maximum 
amplitude of the fluid motion was 70 cm. The period of 
fluid oscillation was variable between 1 s and 20 s. 

The height  and  length  of  the  ripple  model  were 
selected to be 5 cm and 30 cm, respectively (Figure  1). 
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Fig.2 Exprimental apparatus. 

Table 1 Experimental conditions. 

Run        12        3 4 

T(s)      9.0      6.0      3.0 6.0 

U(cm/s)  13.9     20.9     20.9 10.5 

Re      2.7xl04  4.2xl04  2.1xl04 l.lxlO4 

U : amplitude of the oscillatory flow velocity 

Re 
Ua    UZT 
V 2.HV 

Reynolds number 

a : amplitude of the oscillatory flow motion 
V : kinematic viscosity of fluid 
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RESULTS OF LABORATORY INVESTIGATION AND DISCUSSION 

Mean Fluid Velocity 

The boundary layer developed along a ripple surface 
can be divided into two parts. The first one is the 
inner boundary layer or the Stokes layer existing very 
close to the bottom boundary, where the fluid flow is 
strongly controlled by fluid viscosity. The second one 
is the outer boundary layer where the flow structure is 
characterized by  the  behavior  of  organized  vortices 



OSCILLATORY FLOW OVER RIPPLE MODELS 665 

separated from the crest of the ripples.  The thickness 
of the inner boundary layer is  very thin with the order 
of Jv T, where V is the kinematic viscosity of fluid and 
T is the oscillation period. 

Variation of the mean velocity fields during the 
phases 0 to 7^/8 for Run 3 was illustrated in Figure 4 
with a time interval of TC/8. Through the careful 
observation of time variation of velocity field 
illustrated in Figure 4, the behavior of an organized 
vortex covering its growing and then decaying processes 
can be realized. This phenomenon is a remarkable 
feature of the outer boundary layer of the oscillatory 
flow. 
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Fig.4  Distributions  of  temporally   averaged   fluid 
velocity for Run 3. 
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Fig.6 Stationary velocity distributions for  (a)  Run 2 
and (b) Run 3. 
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Table 2  Maximum speed of stationary current, Vmax, 

T (s)           3         6 9 

U (cm/s)       20.9      20.9      13.9 

Vmax (cm/s)    15.8      13.3       8.02 

V max 
T 0.76      0.64      0.58 

stationary cells are significantly correlated with the 
vortices which seem to strengthen the stationary 
velocity component compared with that predicted for 
rolling grain ripples. The laboratory data at the 
University of Tokyo (Hamamoto, et al.,1982) obtained by 
using a sinusoidal shape bottom boundary indicated that 
the questioned ratio was about 0.3, considerably smaller 
than the present results. Therefore the circulation of 
the vortices generated over the round-crested ripples is 
expected to be smaller than that over sharp-crossted 
ripples. The second series of our experiment using a 
round-crested ripple model, which is now going on, is 
expected to give more definte conclusions on this 
subject. 

Fluid Turbulence Intensity 

The intensity of fluid turbulence was calculated by 
using 150 data for each velocity component obtained for 
each phase at each measuring point. Figure 7 shows the 
variation of the vertical distribution of turbulence 
intensity expressed in the form of RMS value during a 
half-cycle of fluid oscillation. The intensity of fluid 
turbulence was slightly large in the area where the 
vortex separated from the right hand side crest in the 
preceding period was still existing at the phase of 
( 0/8 )'C and gradually attenuated in due course. On the 
contrary to this, the turbulence intensity in the right 
hand side area of the left crest increased and the area 
with large turbulence intensity increased its size. The 
turbulence intensity reached the maximum at the phase 
4U/8 near the center of the vortex, the value of which 
became as large as 80 % of the^velocity amplitude of the 
undisturbed oscillatory flow, U. The fluid turbulence 
was convectively transported toward the down stream, and 
prevailed in almost all over the boundary layer between 
the two neighbouring crests at the phase 67L-/8. The 
turbulence intensity became to decrease its magnitude at 
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Fig.7 Distributions of the fluid  turbulence  intensity 
for Run 3. 



670 COASTAL ENGINEERING -1990 

the phase 7TC-/8,  but the intensity still kept the  level 
of 60 % of the velocity amplitude. 

The Reynolds Stress 

The kinematic Reynolds stress, -u v , was also 
obtained as depicted in Figure 8. The distributions of 
the Reynolds stress show more clearly the effect of the 
vortices on the turbulent fluid. At the phase (0/8)TL, 
the Reynolds stress was almost zero everywhere except 
the limited region on the right hand side where a weak 
negative Reynolds stress was observed corresponding to 
the vortex shed from the right hand side ripple crest. 
At the phase TT/8 a weak positive Reynolds stress began 
to appear in the downstream of the left crest 
corresponding to the release of vorticity from the 
crest. The Reynolds stress increased very rapidly at 
the phase 2K/8, where the value was positive below the 
prescribed streamline with the maximum fluid velocity 
and negative above the streamline. The region of large 
Reynolds stress moved downstream, and the absolute value 
of the Reyolds stress reduced considerably at the phase 
371/8. This reduction corresponds to the fact that the 
vertical distribution of mean fluid velocity became more 
uniform near the crest. The Reynolds stress took 
positive value almost everywhere, and reached its 
maximum at the phase 4TC/8 in the vortex region. 

The Reynolds stress begans to appear in the region 
above the ripple trough, and was probably induced by a 
large fluid velocity transported convectively from the 
left hand side ripple crest. The maximum fluid velocity 
at the trough located at about y = 70 mm, below and 
above which the Reynolds stress was positive and 
negative respectively. The overall Reynolds stress 
gradually decreased toward the phase 71^/8. 

These observations reveal that the Reynolds stress 
is significantly correlated with the release of the 
vorticity from the ripple crest and is essentially zero 
in the area where the vorticity is not supplied from the 
ripple crest even if the turbulence intensity has non- 
zero value there. 

Kinematic Eddy Viscosity 

The kinematic eddy viscosity, Eu , was calculated at 
a few fixed points as well as at the center of the 
organized vortex. Because the generation of the 
Reynolds stress is significantly correlated with the 
vortex formation as revealed previously, the temporal 
variation of the kinematic eddy viscosity at the  vortex 
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Fig.8  Distribution of kinematic Reynolds stress for 
Run 3. 
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center will be described here. The results were given 
in Figure 9, in which the kinematic eddy viscosity was 
calculated from the raw data, without smoothing, of the 
distribution of the fluid velocity and the Reynolds 
stress. A large variety of the kinematic eddy viscosity 
with time is almost in accordance with the undisturbed 
oscillatory flow for each case. It is clearly seen that 
the kinematic eddy viscosity increased linearly with 
phase until the phases 4TC/8 and 1271/8, at which the 
fluid velocity reached its maximum. The kinematic eddy 
viscosity, then, decreased rather gradually, and 
therefore it indicated a slightly unsymmetrical 
distribution with respect to the phase. The above 
feature was common for each run. The distribution of 
the kinematic eddy viscosity non-dimensionalized by the 
velocity amplitude of the undisturbed oscillatory flow 
and the ripple height, , becomes nearly identical as 
shown in Figure 10. The results obtained here suggests 
that the assumption of constant kinematic eddy viscosity 
does not hold in the present type of flow, and a 
turbulent model such as two equation model must be 
employed to predict the flow field. 

Fig.9 Temporal variations of kinematic eddy viscosity at 
the vortex center. 
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Fig.10 Temporal  variation  of  the 
kinematic eddy viscosity. 

non-dimensionalized 

CONCLUSIONS 

A detailed measurement was performed for the 
oscillatory boundary layer flow over a shap-crested 
ripple model by using a 2-D LDV cotrolled by a computer. 
The conclusions are summarized as follows: 

(1) The oscillatory boundary layer over a ripple model 
is separated into two parts ; the inner and the 
outer boundary layers. The thickness of the inner 
boundary layer is well expressed byJvT. The feature 
of the outer boundary layer is characterised by the 
organized vortices, and the growth of the vortices 
has a phase-lag against the undisturbed main flow. 

(2) The stationary velocity   r  
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~4-  conditions. 
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near  the  bottom 

(3) The fluid turbulence is found to be closely 
correlated with the vortices. The generation of the 
Reynolds stress is limited essentially within the 
vortex region. Some minor part of the vortices is 
convectively transported downstream, and yields weak 
Reynolds stress there. 
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(4) The kinematic eddy viscosity obtained at the near- 
center of the organized vortices reveals that it 
varies sinusoidally in accordance with the 
oscillatory flow. The variation of the kinematic 
eddy viscosity with respect to the phase is similar 
to the other regardless of the test conditions 
reported herein. 

(5) The three-dimensional structure of the oscillatory 
boundary layer is still left as a future subject. 
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