
CHAPTER 50 

Estimation of Directional Spectrum Expressed in Standard Form 

Masahiko Isobe 1 

Abstract 

A standard directional spectrum is determined by a finite number of parame- 
ters included in its mathematical expression. In this paper, a theory is developed 
to estimate the parameters from a given data set on the basis of the maximum 
likelihood method. The theory is applied to estimating the parameters in the 
Mitsuyasu-type standard directional spectrum from data obtained by a three- 
component array. Main results of analysis of field data are 1) the peak wave 
direction agrees well with the mean direction defined at each wave frequency, 2) 
the peakedness parameter can be approximated by that estimated from the long- 
crestedness parameter at each wave frequency, and 3) the peakedness parameter 
takes its maximum at the frequency slightly lower than the peak frequency. 

1. Introduction 

A random sea state is described by a directional spectrum. In recent years, 
field observations of directional spectra have often been carried out using varieties 
of measuring instruments developed. At the same time, many theories have 
been developed for the accurate estimation of directional spectrum (Isobe et al., 
1984; Kobune and Hashimoto, 1986; Hashimoto and Kobune, 1988). Cross and 
power spectra, from which the directional spectrum is estimated, are statistically 
random quantities. However, the statistical variability is not appropriately taken 
into account in the theories developed so far. 

A standard form of the directional spectrum such as the Mitsuyasu-type 
directional spectrum is determined by a finite number of parameters. This way of 
describing directional spectra is convenient for practical uses such as establishing 
a data base of random sea waves or specifying a design wave condition. Hence, 
it is necessary to develop a theory to estimate the values of these parameters on 
a reasonable basis. 
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In this paper, a general theory is presented to estimate the parameters in- 
cluded in a standard directional spectrum on the basis of the maximum likelihood 
method, in which the statistical variability of the Fourier coefficients is taken into 
consideration. Then, an explicit expression is given for the Mitsuyasu-type di- 
rectional distribution function. The theory is applied to data obtained from field 
experiments and the characteristics of directional sea state are discussed. 

2. Theory 

2.1 Probability density of Fourier coefficients 

Suppose M kinds of time series data, £(m)(a;m,i!) (m=l to M, xm: coordi- 
nates at measuring points, t: time), of various wave properties at various points 
are given. The time series £^m) are expanded into Fourier series as 

oo 

?m\xm, t) = J2(AiT} cos 2wU + Af sin 2wf,t) (1) 

From the central limit theorem, the coefficients A•   and A•  have normal dis- 
tributions with zero means. Hereinafter we deal only with the ith component, /;, 
of the frequency and drop the subscript i.  Then the coefficients A•   and A• 
are expressed in a vector form as 

t) <»> 
and the cross covariance matrix, SA/, of A is expressed in terms of co-spectrum 
matrix, C, and quadrature-spectrum matrix, Q, as 

HA/ = [< AAf >} 
C    Q 

-Q   C 
A/ (3) 

Where A/ is the frequency range that the coefficient A represents and < > 
denotes an expected value. The cross-power spectrum matrix, $, are defined as 
®mn = Cmn — %Qmn and related with the directional spectrum, S(f,8), as 

/•2ir 

^mn(f) = I ^ Hm(f, 6)Bn(f, 6) exp[-»-fe(a!B - xm)]S(f, 6)d6 (4) 
./o 

(Isobe et ah, 1984). Where / is the frequency, 6 the wave direction, k is the wave 
number vector, Hm the transfer function from the water surface elevation to the 
mth measured quantity, and   ~  denotes the complex conjugate. 

From the cross-covariance matrix expressed by Eq.   (3), the joint normal 
distribution, p(A), of the Fourier coefficients A is given as 

v(A) = — J=exp[--l-AtE-1A] (5) 
(X/2¥A/)2M\M 2A/ J 
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(Rice, 1944). Where |E| and E-1 are the determinant and inverse matrix of E. 

Now a complex variable, £, is defined as 

C = Ac - zA, (6) 

then the right hand side of Eq. (5) is expressed in terms of £ as 

^ = (^A7mexp[-^7c^lcl (7) 

in which the dimension of the matrix reduces to M. In deriving the above equa- 
tion, 

$A/ = [< CC > /2} = {C- tQ)Af (8) 

and the relationship, |S| = |$|2, is used. 

2.2 Definition of likelihood function 

If the directional spectrum is given, $ can be calculated by Eq. (4) and the 
joint distribution function of A is determined by Eq. (7). Since A is obtained 
by the Fourier analysis of given time series data, Eq. (7) gives the probability 
density with which the given A occurs. 

A set, A"' (j=l to J), of the Fourier coefficients A is obtained by dividing 
the time series into segments or from a small but finite range of frequency. The 
joint probability with which the set A"' (j=l to J) occurs at the same time is 
obtained by multiplying each probability density. Its Jth root, L, is expressed as 

I/J I(AW;$) = {p(A^) x P(AM) x • • • x p(AfJ1)} 

1 M   M 

= (2xA/n<&i exp[~ £ £ <&^$"m] (9) 

where 

m = o JA 7 2-j >n  W (.lu) 

From the above definition, <lrem is regarded as the quantity which can be obtained 

by operating a rectangular filter to the periodogram £n ^/2Af and this means 
that $„m is the cross or power spectrum obtained by the Fourier analysis. 

The quantity L expressed by Eq. (9) means the possibility or likelihood that 
the set A"' occur at the same time and called the likelihood function. From 
field measurements, A"' (j—1 to J) is given but $ is unknown. In the maximum 
likelihood method, $ is determined so that the possibility becomes maximum. 

As seen from Eq. (4), the cross-power spectrum matrix $ is a function 
of the parameters included in the standard directional spectrum.  However, we 
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first assume that every component in the cross-power spectrum matrix changes 
independently and find the maximum value of the likelihood function in a global 
sense. To obtain the value of $ which maximizes L, we take the derivative of Eq. 
(9) with respect to every component, $u (k and /=1 to M), of the matrix $ and 
make every derivative vanish. 

Let the cofactor of the matrix <& be denoted by <f>, the following relationships 
are obtained from mathematical theorems concerning a matrix. 

M 

k'=l 

mn        |<6 \xil) 

And hence 
al$l=^ = |*|$-i (13) 

mn 
= -*,-;1**• (w) 

Now the derivative of Eq. (9) is expressed as 

or MM 

— = Z x {-*,? + £ £ *i'Ui} (15) 

To make the derivative vanish, we obtain 

Km = §nm (16) 

and then the maximum value of L is obtained as 

e-M 

imax = (2wAf)M\^\ (17) 

Equation (16) means that the cross-power spectra $nm should agree with the 
quantity which is obtained by operating a rectangular filter to the periodogram. 

2.3 Estimation of parameters in standard directional spectrum 

Once we choose a standard directional spectrum, the components of the 
cross-power spectrum matrix are not independent of each other. The cross-power 
spectrum matrix, $nm, is now a function of the parameters, A; («=1 to I), in 
the standard directional spectrum through Eq. (4) and is written as $„m(A,-). 
Hence, to determine the value of A; by the maximum likelihood method, we take 
the derivative of Eq. (9) with respect to A; (i=l to I) and make every derivative 
vanish. 
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The derivative of the likelihood function with respect to A; can be obtained 
by the chain rule as 

On substituting Eq. (15) into the above equation and setting the derivative equal 
to zero, the following equation results: 

MM MM a* 

E Ei-^1 + E E ^:^^~l}-~ = o (19) 
fe=l 1=1 m=ln=l l 

From the above equation with i=\ to J, we can determine the values of A, (i=l 
to /) and then the directional spectrum. 

Once A, are determined, the value, £ma,x, of the likelihood function corre- 
sponding to A, is calculated. Since the global maximum Zmax is given by Eq. 
(17), the adaptability of the standard directional spectrum can be defined as 
imax/imax- This is an advantage of the present method. 

The concept of the maximum likelihood used in the present study is similar 
to that used in Hashimoto and Kobune (1988). However, in the present study, the 
joint normal distribution of the Fourier coefficients is taken into consideration, 
whereas in Hashimoto and Kobune (1988) the cross-power spectra are assumed 
to be independent of each other. For example, when two time series data are 
obtained at very close locations, it is more rational to take into consideration the 
correlation between the Fourier coefficients as in the present study. 

In the numerical calculation of Eq. (19), the Newton-Raphson procedure can 
be employed. Let the left hand side of Eq. (19) be denoted as 

MM MM Q(f, 

fM = E Ei-*.-*1 + E E *r:*nra$-l}^f (20) 
k=ll=l m=ln=l OA' 

then the second derivatives are expressed as follows: 

or MM MM O2,T, 

d\i.   h,} ii mkhxt,d\t 

M     M    M    M MM 

+ E E E E[-*iW + {*£ E E *Am*£ 
k' = lV = lk=ll=l m=ln=l 

m=l ?i=l l r 

By the linear approximation of /;(A,/) the following iteration formula can be 
obtained: 

Ap^A^-E^r^Uu) (22) 
i' = l l 
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where A, and A; are the values of A; at ith and (i + l)th iteration steps. The 
above formula is repeatedly used until a converged solution is obtained. 

2.4 Expression for Mitsuyasu-type directional spectrum 

The Mitsuyasu-type directional distribution function is expressed as 

s^-^^Brrlm^r' (23) 

where P(f) is the frequency spectrum, and T represents the gamma function. 
To estimate the directional spectrum for a certain frequency /, the unknown 
parameters are P, 90 and s which are denoted by Aj, A2 and A3, respectively. 

In the following, we derive the equations for data obtained by a three- 
component array in which the water surface elevation, rj, and two components, 
u and v, of the horizontal water particle velocity are measured. By denoting 
£(i) _ ^ £(2) _ u anc[ £(3) _ ^ tne cross-power spectra for Eq. (23) are 

$n = ^(1 + f) (24) 

$12 = PHum1 cos eo (25) 

<S>13 = PHumlSm60 (26) 

$22 = PHK1- + m2 cos 20o)(l + e) (27) 

$33 = PH2
U{\ - •2 cos 20o)(l + e) (28) 

$23 = P#>2sin2#0 (29) 

where 
mi = (7TT) (3°) 

s(s — 1) ,     . 
m2 = 2^TIK7^) (31) 

and Hu is the transfer function form the water surface elevation to the magnitude 
of the horizontal water particle velocity. Though the quantity Hu can be evaluated 
by the small amplitude wave theory, the following formula obtained from the 
relationship among the power spectra is used to eliminate the error included in 
the data.   

Hu = 
\|    p,(/) (32) 

Equations (24), (27) and (28) are expressions for power spectra and are multiplied 
by (1 + e) on assuming that a noise component with a relative power of e is 
included in the data.   Hence, e becomes the fourth unknown parameter, A4, to 
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be determined by the maximum likelihood method. If another assumption that 
the noise component is due to a component of the directional spectrum with a 
uniform directional distribution is adopted, eP, ePHl/2 and ePHl/2 should be 
added to the power spectra <&n, $22 and $33, respectively. Which assumption 
should be adopted can be discussed in terms of the adaptability imax/£max. 

It is easy to differentiate Eqs. (24) to (29) with respect to A, (Aj = P, A2 = 
90, A3 = s, A4 = e) up to the second order and by substituting the derivatives into 
Eqs. (20) and (21) the right hand side of Eq. (22) can be determined and then 

modified values A^ are calculated. The initial values of A; (i=l to I) are taken 
to be the power spectrum of 77, the mean direction, the value of s obtained from 
the long-crestedness parameter, and zero, respectively. 

Numerical instability sometimes occurred in the algorithm of the original 
Newton-Raphson method. Hence additional procedures are employed. When 
modified A, gives a smaller value of the likelihood function, the magnitude of 
the modification by Eq. (22) is made half. When a convergent solution is not 
obtained within 10 iterations, the procedure is continued by neglecting the sec- 
ond derivatives in Eq. (21). This modification made the numerical calculation 
convergent for all the cases tried. 

3. Application 

3.1 Field experiment 

The data used in application of the present theory were obtained from three 
series of field experiments. Sets of an ultra-sonic wave gage and an electromag- 
netic current meter were installed at the sea bottom. The first and second field 
experiments were performed from 1 to 2 of October, 1987, and from 29 to 30 of 
August, 1988, respectively, at Oarai beach, Ibaraki prefecture, Japan, facing the 
Pacific Ocean. One segment of data record contains 2046 data with the sampling 
frequency of 0.5s, and 95 and 75 segments were recorded in Oarai 1987 and 1988 
experiments, respectively. The bottom topography and the arrangement of the 
instruments are shown in Fig. 1 for the Oarai 1988 experiment, as an example. 
The third experiment was performed from 11 to 18 of January, 1989, at Ogata 
beach, Niigata prefecture, Japan. This experiment was performed as a part of a 
comprehensive, inter-institutional field experiment, SWAN 89 (Sediment, Wave 
and Nearshore Circulation Observation, 1989), managed by Professor Tsuchiya, 
Kyoto University. Data segments with a 17 min. duration were recorded every 
one hour and total number of segments is 134. The average wave statistics during 
the observation are shown in Table 1. 

3.2 Result of data analysis 

Assumptions of noise components are examined first.   Figure 2 shows the 



654 COASTAL ENGINEERING- 1990 

o 
o 

CO 

n3 
O 

O ft 
M) 
Pi 

5 

< 
I-I 

bb 
fa 



STANDARD DIRECTIONAL SPECTRUM 655 

Table 1: 1 Wave statistics during field experiment s. 

Observation Measuring 
point 

h 
(m) 

Hi /3 
(m) 

Tl/3 

00 
#m 7 

OA87 0 12.5 0.63 6.3 174 0.61 
OA88 1 13.2 1.09 7.4 165 0.43 

2 12.1 - - - - 
3 10.9 1.04 7.5 175 0.40 
4 7.3 1.02 7.6 -179 0.33 

OG89 1 25.0 1.67 6.8 -77 0.44 
2 15.3 1.31 6.5 -51 0.42 
3 11.3 1.19 6.2 -50 0.40 

OA: Oarai, OG: Ogata, h: water depth, 

Hii3: significant wave height, T^m: significant wave period, 

9m: mean direction measured anti-clockwise from east, 

7: long-crestedness parameter. 

result of data analysis for three assumptions of noise component. From the top 
to bottom figures, average values during the observation are shown for the fre- 
quency spectrum, P{f), the peak direction, 90, the peakedness parameter, s, and 
the adaptability, imax/Lms,x, are plotted. In each figure, the solid line corre- 
sponds to the assumption of the noise component proportional to the frequency 
spectrum, and the dotted line to the assumption of the noise component with 
uniform directional distribution. The broken line represents the result when 
the noise component is neglected. Without noise component, the adaptability 
imax/imax decreases significantly. The adaptabilities are almost the same for 
the two assumptions of noise component, but the difference of the estimated s 
between the two assumptions is large. Since the assumption of noise component 
proportional to the frequency spectrum gives a slightly higher adaptability and 
gradual increase of s with decreasing water depth, this assumption is adopted in 
the following analysis. 

In the top of each figure through Figs. 3 to 6, P is the frequency spectrum, 
eP the noise component, and Pn the frequency spectrum of the water surface 
elevation. In the second figure, 0o denotes the estimated peak direction. The 
symbols 9m and 9P represent the mean and principal directions, respectively, 
which are calculated from the power and cross spectra (Horikawa, ed., 1985). In 
the third figure, s is the estimated peakedness parameter, and sy represents s 
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calculated by the following equations: 

2 $20 + $02 - \J(®20 ~ $02)
2    ,    — n ,QQx 

7   = : ; • lJJJ 
$20 + $02 + V ($20 - $02)2 + 4$? Hi 

2s+ 1 
7" = (34) 

s2 + s+ 1 

Equation (33) is the definition of the frequency-dependent long-crestedness 
parameter and Eq. (34) gives the relationship between the long-crestedness pa- 
rameter and the peakedness parameter. The quantity sapprox. is an approximation 
of s which is obtained by substituting 7a for 7 in Eq. (34). The quantity 7„ is 
calculated by the following equations: 

(1-y)=«4-2sin22em
(1~y) (35) 

a= 0.859-0.17472-0.104sin22em (36) 

where 7 is calculated by Eq. (33) and 7' denotes the value of 7 which is calculated 
from Eqs. (34) and (37). 

*?„ + *?! (3?) 
S + 1 ^ $00($20 + $02) 

For Fig. 4, the pressure variation is used instead of the water surface eleva- 
tion. The small amplitude wave theory is used to determine the transfer function 
from the water surface elevation to the pressure variation. The results are almost 
the same as those shown in Fig. 3 in which the water surface elevation is used. 

Figures 5 and 6 shows the results for Oarai 1987 and Ogata 1989 experiments, 
respectively. From these figures, it can be concluded that the estimated value P 
of the frequency spectrum, the peak direction 90, and the peakedness parameter 
s agree well with the power spectrum Pn of the water surface elevation, the mean 
direction 0m, and the approximated value sapprox.i respectively. Since the latter 
parameters are very easy to calculate, the computational time can greatly be 
reduced. 

In the frequency spectrum, the high frequency range seems to follow the 
-4 power law. The maximum s occurs at the frequency slightly lower than the 
peak frequency and the dependence of s on the frequency is different from the 
formula proposed by Mitsuyasu et al. (1975). Accumulation of much more data 
is necessary for a further and more reliable discussion. 

4. Conclusion 

A general procedure is given on the basis of the maximum likelihood method 
for estimating the parameters included in a standard directional spectrum.  As 



660 COASTAL ENGINEERING -1990 

an example, formulas are given for estimating the parameters in the Mitsuyasu- 
type directional spectrum from the data of the water surface elevation and two 
components of the horizontal water particle velocity. The present method is ap- 
plied to the data obtained by three series of field experiments. It is found that 
the parameters in the Mitsuyasu-type directional spectrum can be approximated 
by the parameters which can be calculated with much less computational time. 
Accumulation of much more data is necessary to discuss the characteristics of 
directional sea states such as the functional dependence of the peakedness pa- 
rameter s on the frequency. The appropriate assumption on the noise component 
remains to be studied in the future work. 
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