
CHAPTER 46 

A comparison of the performance of three mathematical 
models of wave disturbance in harbour approaches 

Jane V Smallman1 and Nigel P Tozer2 

Abstract 

In many design studies for coastal harbours mathematical 
models are used to define wave conditions in the vicinity of their 
entrance.  There is a wide variety of models available for this 
purpose, each with their own characteristics. This paper compares 
the performance of three models which are in use for this type of 
study.  The advantages and drawbacks of each of the models is 
considered by comparison with results from a physical model of a 
typical harbour approach bathymetry. 

Introduction 

Mathematical models of wave disturbance are in frequent use 
for predicting wave conditions both within and in the approaches 
to a harbour.  Information on wave activity in the approaches to a 
harbour will be required to make a full assessment of ship 
manoeuvrability, and the movement of sediments.  In the case of a 
harbour entered by a dredged channel, estimating wave disturbance 
will often be of importance in studies directed towards optimising 
channel depth and alignment. 

There are presently available a wide variety of models which 
can be used to estimate wave disturbance.  In this work attention 
is directed towards situations in which wave conditions are to be 
calculated at many locations, rather than at a few isolated 
points, in the harbour approaches.  The performance of the models 
within a harbour is not considered here, either because their 
behaviour in such circumstances has already been examined, or they 
are unsuited to that type of application. 

In developing wave disturbance models comparisons are often 
made between their results, and those from analytical solutions to 
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idealised problems.  In this case the technique which is used is 
to compare the results from the three mathematical models, with 
those from a physical model for a typical harbour approach 
bathymetry.  Four sets of results from the physical model were 
available covering different incident wave conditions.  In 
addition to the accuracy of the representation achieved by the 
mathematical models, consideration was also given to the speed of 
the calculation procedure. 

The three mathematical models used in the comparison were a 
wave ray model and two finite difference models. The three 
models, and the physical assumptions inherent in their 
mathematical derivation, are described in detail in the following 
section.  In subsequent sections the physical model test case is 
described and the performance of the models examined.  In the 
final section the overall conclusions resulting from this work are 
given. 

Description of the mathematical models 

The three models used in this comparison were PORTRAY (see 
Smallman, 1987) and two finite difference wave models based on 
alternative formulations of the mild slope equation.  PORTRAY, 
which is based on a ray tracking technique, was developed at 
Hydraulics Research, and is in frequent use in site specific 
studies.  Both of the finite difference models were developed at 
UK Universities and were transferred to Hydraulics Research during 
1987.  The finite difference models are based on hyperbolic, see 
Copeland (1985), and parabolic, see Dodd (1988), approximations to 
the mild slope equation.  The mild slope equation is given by 

V.(c  cg V<J>)   + w2  cj> cg/c = 0 (1) 

where $(x,y) is the velocity potential, c is the phase velocity, 
c_ the group velocity and w the radian frequency.  The equation, 
first derived by Berkoff (1972), describes the propagation of 
periodic, small amplitude surface gravity waves over a seabed of 
mild slope and will represent the combined effects of refraction, 
shoaling and diffraction.  A more detailed description of each of 
the models follows. 

PORTRAY is based on a ray tracing technique developed from 
the theory of light.  Under the assumptions that the waves are 
linear, and that a wave in water of local depth, d, will behave 
similarly to a wave in water of constant depth d, wave refraction 
and shoaling can be shown to be governed by Snells law.  Rays are 
tracked in the direction of wave propagation, and wave heights are 
calculated using the principle of conservation of energy between 
neighbouring rays.  This approach has a limitation in that 
diffraction, ie a lateral transfer of wave energy, which can be 
caused by rapid gradient changes in the bed, is not included 
explicitly in the governing assumptions of the model.  This can 
lead to some difficulties in applying the model, particularly in 
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areas where relatively long period waves are incident along the 
line of a dredged channel.  The model has, however, been 
extensively validated against physical models and in most 
situations, particularly in harbour wave,disturbance studies, 
found to provide accurate results, see Smallman (1987). 

A set of linear hyperbolic equations to model refraction and 
diffraction processes in coastal zones was put forward by Ito and 
Tanimoto (1972) at about the same time as the elliptic mild slope 
equation was derived.  Later Copeland (1985) derived similar 
equations from the transient form of the mild slope equation. 
This hyperbolic form can be written as 

-§§+ ^V(n n) =0 
I (2) 
|?+ V.Q = 0 

Here the water surface elevation n is 

n = A(x,y)e-
i(X-wt) 

where A is the amplitude of the water surface fluctuation 
and  x is tne phase angle. 

c 
Also, n = -^ and Q is a dummy variable representing the flow 

rate, defined as a vertically integrated function of particle 
velocity.  The equations can represent diffraction, refraction and 
reflections under the assumptions made in their derivation. 

By creating a hyperbolic form from the original equation the 
mild slope problem has been embedded in a larger space (x,y,t). 
This appears to be an unnecessary complication as the time 
dependence, e 1W , is known in advance.  Therefore time stepping 
will produce only a phase change.  If it does not then there is a 
basic inconsistency in the derivation. 

This point has been explored by Madsen and Larsen (1987). 
They make the observation that the time stepping is actually only 
an iteration towards the steady state, and that only the steady 
state solution is a solution to the mild slope equation. This 
accounts in part in the difficulties which are known to occur in 
getting the hyperbolic form to converge to the steady state. A 
difficulty which needs to be resolved more satisfactorily before 
the method can be used reliably in practice. 

The time taken to solve the elliptic mild slope equation 
computationally, and the mathematical uncertainties of the 
hyperbolic form, means that attention has been given to the 
parabolic approximation.  This will be computationally efficient 
to solve and mathematically more rigorous in its derivation. 
However, this is achieved at the expense of accuracy in the 
representation of physical problems.  That is, whilst refraction 
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and diffraction are represented in the parabolic approximation, 
reflections are not.  A consequence of this is that it is 
therefore not suitable for representing wave disturbance in 
harbours where reflected waves will be important. 

The first comprehensive account of a parabolic approximation 
to the mild slope equation was given by Radder (1979).  The 
equation modelled here is based on an improvement to this work 
given by Booij (1981).  The derivation assumes that the reflected 
wave field is negligibly small so that only forward travelling 
waves are considered.  This leads to the equation 

where x is the main direction of wave propagation, y is the 
transverse direction. Deviations from the x direction are 
considered in the equation as oblique amplitude modifications. 
The parabolic approximation will allow refraction, shoaling and 
seabed diffraction to be modelled.  The approximation works best 
where the important effects occur in the direction of wave 
propagation, as transverse effects are only included in a weak 
sense.  A detailed account of the deviation of the governing 
equation for the parabolic model used in this work, and its 
application to a number of test problems, is given in Dodd 
(1988). 

The equation (3) can be solved numerically using an 
evolutionary finite difference technique; this type of method only 
requires storage of one or two adjacent rows of solution points 
and, as a consequence, is considerably less expensive in terms of 
cost and storage than the equivalent numerical solution to an 
elliptic equation.  Thus, the main advantage of the parabolic 
equation is that it permits a more rapid and straightforward 
method of solution than would be possible for the elliptic 
equation. 

Finally, all three of the models were modified to include the 
effects of wave breaking.  This was done using an empirical 
formulation put forward by Weggel (1972). 

Physical model 

The physical model layout is shown in Figure 1.  In the tests 
carried out random waves tests for two spectra from each of two 
directions were carried out.  The characteristics of the incident 
conditions are given in Table 1. 
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Test   Significant wave   Peak wave period Direction 
No height Hs (m) T (s) 

y  8.6 
(°) 

1 4.3 0 Storm 
2 1.9 6.0 0 Typical 
3 6.0 10.0 25 Storm 
A 3.2 7.5 25 Typical 

Table 1. Incident wave conditions for physical model tests. 

10m     (model) 

200'  400'  600'  800   1000m    (proto) 

Figure 1 Physical model layout 

All of the physical model tests were run at a fixed still 
water level of +1.9m CD.  Measurements of wave height (H ) were 
made in the physical model at the ten locations shown on Figure 1. 
These positions were selected to be representative of conditions 
within and at the sides of the channel.  This particular 
bathymetry is typical of a dredged harbour approach channel and, 
as such, will provide a good test of the capabilities of the 
models for a range of incident wave conditions. 
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Mathematical model set up 

All of the mathematical models require the bathymetry to be 
described as a set of depth values over a regular grid. Firstly, 
the bed contours were digitised and then output on a 7m 
(prototype) mesh. This mesh size gave at least ten points per 
wave length to the incident wave conditions given in Table 1. 
This choice of mesh size satisfied the accuracy of representation 
constraints of the two finite difference models.  PORTRAY is not 
reliant on such grid constraints, so a second set of grid data, 
each node 35m (prototype) apart, was*generated without significant 
loss of resolution in the description of the bathymetry. PORTRAY 
was run both for the 35m and 7m mesh layouts. 

The mathematical model grid systems were deliberately aligned 
to one of the wave propagation directions. This was done because, 
in the derivation of the parabolic model, the coordinates are 
assumed to be in the main wave propagation direction. It is 
possible for the model to include wave effects in directions up to 
45° different from the main direction, but with its accuracy 
reducing as the angle increases. This point will need to be borne 
in mind when considering the parabolic model results for the 25° 
direction cases. 

All of the mathematical models are monofrequency, 
unidirectional models.  It is possible to run each of them 
repeatedly for different frequency components, and then use linear 
superposition to achieve a spectral description of wave 
propagation. This would give a true comparison with results from 
a random wave physical model. However, for this study 
monofrequency runs were made using the peak period of the incident 
wave spectrum to represent the random wave train. This is not 
ideal, but has been found in many applications to give a 
reasonable approximation to an incident wave spectrum.  It is 
intended that this research will be extended subsequently to 
include mathematical models with random wave incident conditions. 

For the hyperbolic finite difference model it remained to 
select a time step. To satisfy the stability criterion of this 
model, time steps were selected such that 25 elapse in each wave 
period. To achieve convergence for this model it was typically 
necessary to run it for 10 wave periods. Neither the parabolic 
model nor PORTRAY are time dependent models, so no time step was 
required for either. 

Comparison of results 

For the purposes of discussion of the results each of the 
conditions in Table 1 will be referred to as 'typical' or 'storm' 
waves with an associated direction. For example, the condition 
storm (25°) will refer to results from test 3. 
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For each of the four test cases wave height coefficients at 
analysis points corresponding to the probe positions of the 
physical model were calculated.  These are presented in Tables 2 
to 5 for the physical model, each of the mathematical models on 
the 7m grid and PORTRAY over the 35m grid (referred to as PORTRAY 
CG). Each of the tabulated values is averaged over nine grid 
points centred at the analysis point, thus providing values which 
can be confidently accepted as representative of wave conditions 
at the given locations. 

Discussion of results 

Before examining the numerical results in more detail it is 
worth observing some of the more quantitative aspects of the 
results which are shown in Figure 2. 

Figure 2 represents the calculated significant wave heights 
for each of the model tests for the storm (0°) condition. 
Figures 2a and 2b represent the results of PORTRAY for the fine 
and coarse grid solutions respectively.  Figures 2c and 2d 
represent the calculated wave field for the hyperbolic and 
parabolic models. 

Considering Figures 2a and 2b, it can be seen that PORTRAY 
models the wave effects on a fine and course mesh in a similar 
manner. The ray approximation means that diffraction by the 
channel is not represented, and the rays are reflected at the 
channel sides. This leads to the formation of caustics, and 
consequently excessively large wave heights at the channel sides. 
Physically, there will be an area of higher wave activity in this 
location, but the lack of representation of seabed diffraction in 
ray models will exaggerate this effect. This behaviour is is more 
clearly seen in the finer grid case, where distinctive regions of 
large wave heights can be seen.  Figure 2b shows how PORTRAY over 
a coarser grid has led to a more even distribution of the 
wavefield.  This is because the averaging procedure (Southgate, 
1984), used to calculate wave heights in the ray models, has 
effectively introduced a type of numerical diffraction.  Also of 
note are the regions of very low wavfe heights.  Since the PORTRAY 
model is based on tracing out wave orthogonals there will be some 
regions where no rays have been able to penetrate. Wave heights 
in these regions will be physically low, but PORTRAY predicts zero 
or negligibly small wave heights. It should be observed that, as 
far as the ray models are concerned, the storm (0°) was the most 
stringent of the four cases tested. This is because it represents 
long period waves incident along the line of a dredged channel, ie 
the case where physical diffraction will be an important 
mechanism.  It will be seen from the numerical results that its 
performance improves for shorter period waves (typical (0°)), and 
more markedly for waves from 25°. 

Considering the two finite difference models, Figures 2c and 
2d, both hyperbolic and the parabolic models produce a similar 
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WAVEHEIGHTS IN METRES 

••    ABOVE 7.0 
6.0 - 7.0 
5.0 - 6.0 
4.0 - 5.0 
3.0 - 4.0 
2.0 - 3.0 

BELOW 2.0 

600 1200 

DISTANCE IN METRES 

Figure 2a. Waveheight contours. PORTRAY. Storm(0°). 
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Figure 2b. Waveheighi contours. PORTRAY_CG(Coarse Grid),Storm (0°). 
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WAVEHEIGHTS IN METRES 

M    ABOVE 7.0 
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Figure 2c. Waveheight contours. Hyperbolic. Storm(0°). 
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Figure 2d. Waveheight contours. Parabolic. Storm(0°). 
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wave pattern to that of PORTRAY, and compare more favourably with 
the coarse grid solution.  Diffraction of waves in the vicinity 
of the channel results in a more even distribution of wave 
heights.  At the channel sides waveheights are generally larger 
than in the channel region itself.  It can be seen that the 
patterns of wave activity produced by these two models differ away 
from the channel.  The hyperbolic model appears to concentrate 
energy close to the channel whereas the parabolic model spreads 
this diffractive energy out more evenly over a larger region. 

Examination of the tabulated results allows a quantitative 
comparison with the measured data. The following discussion will 
consider positions along the centre, to the left and to the right 
of the channel, for each test case, in turn.  The results shown in 
Table 2 correspond to measured and predicted waveheight 
coefficients at the prediction points, see Figure 1, for the 
illustrated storm (0°) condition, see Figure 2. At positions 3 
and 6, along the centre of the channel, all of the models 
underpredict the waveheights compared with the measured values. 
The finite difference models are more reliable, within 30% of the 
measured data, than the PORTRAY solutions. This will be due to an 
insufficient number of rays penetrating into this region. Further 
along the channel, shorewards, at position 10, each model predicts 
significantly higher waveheights than was measured, although the 
predictions lie within 20% of their combined average.  Considering 
positions to the left of the channel, at points 1, 2, 5, 8 and 9, 
the finite difference models' results are more consistent with the 
measured data, notably at position 1 and 5 where the results lie 
within 10% of the recorded values. Elsewhere, for all the models 
there are some discrepancies for which there is no apparent trend. 
To the right of the channel at point 4 each model overpredicts 
slightly compares with the measured value.  However, at position 7 
the numerical models underpredict conditions compared with those 
measured. 

The tabulated results in Table 3 corresponding to the typical 
(0°) condition indicate that each model's performance will change 
for different incident wave periods.  Only some of the trends 
discussed above are repeated.  At position 3 improvement in the 
predictions is limited to PORTRAY-CG, although the finite 
difference models' prediction is only slightly worsened.  The 
underprediction shown at position 6 for the storm (0°) condition 
is reversed for the typical (0°), and at position 10 the finite 
difference models' prediction is much improved at just over 20% 
difference. Only at position 1 to the left of the channel do one 
of the PORTRAY solutions differ from the measured values by more 
than the finite difference models do. However, the largest 
variations from the measured value oscillates between the models. 
The trend for the storm (0°) condition at position 4 and 7 is 
repeated for the typical (0°); the trends worsened at 4 but 
improved at 7. 

It is clear from Table 3 that the performance of the finite 
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Analysis Physical PORTRAY Parabol .ic Hyperbolic PORTRAY_CG 
point model 

1 0.9 0.6 1.0 1.0 0.7 
2 0.9 1.3 1.2 1.7 1.2 
3 0.7 0.1 0.5 0.5 0.0 
4 0.6 0.6 0.7 0.7 0.8 
5 0.7 0.5 0.7 0.7 1.5 
6 0.7 0.3 0.6 0.5 0.5 
7 0.6 0.5 0.3 0.2 0.0 
8 0.8 0.8 0.9 1.1 0.7 
9 0.7 0.6 1.1 1.1 1.1 

10 0.6 1.3 1.4 1.5 1.7 

Table 2. Waveheight coefficients , Storm(0°) 

Analysis Physical PORTRAY Parabol ic Hyperbolic PORTRAY_CG 
point model 

1 1.1 0.7 1.0 1.0 0.8 
2 1.4 1.4 1.4 1.7 1.5 
3 0.3 0.0 0.4 0.4 0.2 
4 0.6 0.9 0.9 1.1 0.9 
5 1.0 1.0 0.9 1.0 1.2 
6 0.8 1.9 1.0 1.3 1.5 
7 0.4 0.4 0.4 0.4 0.2 
8 0.7 1.1 0.9 1.0 0.9 
9 0.9 1.1 1.4 1.2 1.0 

10 0.9 1.5 0.7 0.7 2.2 

Table 3. Waveheight coefficients , Typ •ical(0°) 

Analysis Physical PORTRAY Parabol ic Hyperbolic PORTRAY_CG 
point model 

1 0.6 0.6 0.9 1.1 0.8 
2 0.5 0.5 0.9 1.1 0.6 
3 0.4 0.9 1.2 1.5 0.8 
4 0.6 0.2 0.7 0.8 0.4 
5 0.6 0.5 0.9 1.0 0.5 
6 0.5 0.4 1.0 1.2 0.5 
7 0.4 0.2 0.8 0.9 0.4 
8 0.6 0.5 0.8 1.0 0.5 
9 0.6 0.4 0.9 1.0 0.5 

10 0.4 0.9 1.1 1.2 0.6 

Table 4. Waveheight coefficients , Storm(25°) 

Analysis Physical PORTRAY Parabol ic Hyperbolic PORTRAY_CG 
point model 

1 0.9 1.0 1.0 1.0 1.0 
2 0.9 0.9 0.9 1.0 0.9 
3 1.1 1.5 1.6 1.4 1.0 
4 0.9 0.8 0.7 0.9 0.6 
5 0.8 0.9 1.1 1.0 0.9 
6 0.8 0.8 1.2 1.2 0.9 
7 0.8 0.2 0.8 0.7 0.7 
8 0.9 0.8 0.9 1.0 0.9 
9 0.9 0.8 1.1 1.1 0.8 

10 0.6 1.3 1.3 1.2 1.0 

Table 5. Waveheig 'ht coefficients , Typ ical(25°) 



608 COASTAL ENGINEERING-1990 

difference models for the storm (25°) conditions is considerably- 
worse than that of the PORTRAY solutions with the parabolic model 
performing slightly better, but results which vary considerably 
from the measured values are commonplace. The results also 
indicate that the PORTRAY-CG solution offers the best comparison 
with the physical model result.  Along the centre of the channel 
the finite difference models show the largest discrepancies with 
the measured values.  To the left of the channel PORTRAY-CG and 
PORTRAY compare well with the measured data with PORTRAY-CG 
marginally better at 5, 8 and 9.  Predictions by the finite 
difference models offer slightly better solutions to the left of 
the channel than along the centre, but still differ markedly from 
the measured values. Along the positions to the right of the 
channel, these discrepancies are reduced at position 4, but are 
again large at 7.  Again the performance of PORTRAY-CG is best 
overall. 

The tendency for the finite difference models to overpredict 
the waveheights for the storm (25°) is not apparent for the 
typical (25°) condition.  Along the centre of the channel the 
PORTRAY-CG offers the best solution.  To the left of the channel 
all the models perform well with results rarely more than 20% 
different, and in general closer to 10% different.  To the right 
of the channel at positions A and 7 the largest deviation from the 
measured data are predicted by PORTAY-CG and PORTRAY respectively, 
with the results within 20% from the measured data at position 4, 
and 10% at position 7. The results from the finite difference 
models in this region are in good agreement with the physical 
model values. 

Summary of results 

The numerical models in general tend to exaggerate the physical 
features.  In particular they display large spatial variations in 
wave height, which are not seen in the physical model. However, 
the mathematical models all give a reasonable representation of 
the overall physical behaviour. 

For waves incident along the line of the channel, the finite 
difference models perform better in general than PORTRAY, although 
for incident waves in the off normal direction, notably the storm 
(25°) condition, the accuracy of the difference models is reduced. 
This confirms the expectation implied in the assumption made in 
the derivation of the parabolic approximation, but is less easy to 
explain in the case of the hyperbolic model. 

Running the PORTRAY model over a carefully selected coarser grid 
has the effect of introducing numerical diffraction into the 
solution.  This leads to a better representation, compared with 
the physical model, than the fine grid case. 

In general the hyperbolic model took considerably longer, of the 
order of 8 to 10 times, to run than the parabolic and PORTRAY 
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models. The formulation of the hyperbolic model, which introduces 
the time variable, also gives rise to difficulties in determining 
the converged solution.  For the test cases described here the 
parabolic and PORTRAY models took approximately 30 minutes elapsed 
time on a SUN 3/50 workstation. 

Conclusions 

All of the mathematical models tested give a reasonable 
description of the overall physical effects of waves propagating 
in the vicinity of a dredged channel.  This was certainly good 
enough to justify their use in comparison of harbour approach 
schemes. Further calibration of the models, against a physical 
model or site specific measurements, is recommended if they are to 
be used for calculation of absolute values. 

The PORTRAY model performed better for shorter period waves, 
and incident directions not along the line of the channel.  For 
longer period waves, and where the waves were directly incident 
along the channel, the parabolic model gave a good representation, 
but does require that the grid is aligned in the main wave 
propagation direction.  The combination of these two models 
appears to encompass most of the important physical features.  The 
hyperbolic model did not appear to offer any significant 
advantages in terms of accuracy over the parabolic model and 
PORTRAY in these situations, and its run-times were significantly 
longer. 

These conclusions are based on the comparisons made with the 
physical model tests described here, but are consistent with the 
anticipated behaviour inherent with the governing assumptions made 
for each of the mathematical models. Further work is in progress 
to examine improvements in the mathematical models' performance 
when random incident conditions are represented. 
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