
CHAPTER 26 

APPLICATION OF LOGNORMAL TRUNCATED DISTRIBUTION TO 
PREDICTION OF LONG TERM SEA STATE USING VISUAL WAVE 
HEIGHT DATA. 
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ABSTRACT 

The purpose of this paper is to analyze the 
behaviour of the lognormal distribution function in 
wave studies, when visual observations are used to 
predict the long term wave height distribution. 

We are focused our attention on the problem 
of visual biased samples. For this kind of data the 
lognormal model does not fit accurately the sample 
leading to wrong extrapolations. 

One possible solution to avoid this problem is 
to consider the sample as truncated. According to this 
procedure the distribution function is estimated based 
only on data higher than the point of truncation. 

1.-INTRODUCTION 

It is well known that the knowledge of wave 
parameters, mainly the wave height, is indispensable 
to carry out projects in maritime engineering, that is 
the reason why at the present most of the developed 
countries are trying to improve their measuring 
networks. 

The very best state would be to have a great 
deal of recorded wave data concerning the area of each 
particular study, but unfortunately the fact of the 
matter is that in many cases instrumental data either 
are not available or do not exist at all, and it is 
necessary to use other sources of wave data. 
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Sources of wave data may be considered under 
the three groups: instrumental, hindcast and visual 
data. 

Instrumental data usually come from wave buoys 
records and they are preferred because of their 
reliability and quality, but among their shortcomings 
are the reduced area of coverage and the limited 
availability which is often due to commercial 
restrictions. 

The hindcast wave data can be obtained from 
wind field analysis. Wave heights are estimated from 
knowledge o£ the wind speed and fetch, covering large 
areas. On the other hand hindcasting methods are not 
vary accurate. 

The third source is visual data. Visual 
observations provide additional information about wave 
parameters, for instance wave direction, and also 
cover large sea areas. The reliability of visual data 
has been fully criticized for different reasons. In 
this paper we are focused our attention on the problem 
of visual biased samples. 

2,-STATEMENT 0g PROBLEM 

Visual data usually come from ship reports,that 
is why an important part of them are concentrating on 
the main shipping routs. 

These data bring up some shortcomings due to 
the observation itself: 

-Wave heights reported in adverse climatic 
conditions tend to be overestimated by the 
observer (Jardine,1979). 

-More ships sail in good weather conditions 
consequently samples are biased towards lower 
wave height values. 

The result is that these samples lead to 
wrong extrapolations of the long term wave height 
distribution when the observations reported as calms 
are included in the sample. 

3 . -MRTHODOT.OOY 

3.1,-Fundamentals 

Since the lognormal distribution function is by 
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and large considered appropriate for wave studies, 
Jasper (1956), Darbyshire (1956),, Khanna and Andru- 
(1974), the cumulative distribution function (CDF) 
corresponding to the sample we are dealing with 
(figure 1) has been plotted in the lognormal probality 
paper (figure 2). 

•    F(H) = p(H<Hj) 
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It can be seen that,when the calms are included 
in the sample, a simple straight line does not fit the 
points accurately enough. 

One possible solution to overcome this problem 
is to consider the sample as truncated in order to get 
rid of those data causing a biased sample. 

A variable may be such it appears to be 
lognormal except in that part of the distribution for 
which the values of the variable either can not occur 
or are not observed. The distribution of such a 
variable is said to be incomplete or, more commonly, 
truncated. 

The resulting distribution might then have a 
shape like figure 3 shows, if the distribution of the 
original population was lognormal. 

f(H) 

Truncated pd f 

H 

Figure 3 

In this case the members of the population 
below y have been eliminated. Below ¥ point there 
are no values of random variable,and their probalities 
are removed. 

Censored distributions differ slightly in 
application in that the total population is present 
but the exact frequencies are known only up to ( or 
beyond ) a certain value. 

In these cases the distribution is  assumed  to 
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have the probability below ( or above ) 
that "6    point. (See figure 4). 

•JJ     lumped     at 

Censored   p d f 

0   y 
f(r) = p(H<n 

Figure   4 

The distribution between truncation and 
censorship arises from the fact that in the first the 
available information is confined to the range ( J ,00 ) 
, whereas in the second a limited knowledge of the 
variable in the range ( 0, Jf) permits consideration of 
the complete range ( 0,CD), (Benjamin, 1981). 

In practice truncated samples arise with 
several types of experimental data in which recorded 
measurements are available over only a partial range 
of the variable. 

In our case the random variable is the visual 
wave height and the point of truncation does not 
physically exist. Obviously there are wave heights 
below the point of truncation and the low wave heights 
, even calms, occur in Nature. 

Strictly speaking we are dealing with a lower 
bound censored distribution in which probabilities 
below a certain value are unreliable. However, if the 
distribution is considered as truncated and we assume 
that the point of truncation is known, the problem 
becomes mathematically tractable. 
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So, a correct value for the point of truncation 
has to be chosen and the distribution function will be 
estimated based only on data higher than the point o£ 
truncation. 

3. ?.. -Procedural steps 

Figure 5 shows the shape of both untruncated 
and truncated lognormal density functions. 
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Figure  5 

The truncated probability density function only 
exists above tf point, and obviously its area must 
equal one, so the PDF is zero up to V and K times 
the untruncated probability density function above 
that point. 

Thus, if the original population has a 
lognormal PDF : 

f(x) 
x B VzfT 

In x - A    2 
1/2 (   ) 

B 

then, the truncated PDF may be written as 

ft(x) = 0 , x < y 

ft(x) = K f(x)       , x >= tf 
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The probability axiom 

ft(x) dx = 1 

leads to 
1 

K =  
1 - FCJ ) 

where F( J ) is de CDF value at tf point. 

Although in principle it would be possible to 
apply the method of moments to estimate A and B 
parameters there seems to be no easy way of solving 
the resulting equations for the first and second 
sample moments. 

Therefore the method of maximun likelihood is a 
good choice to obtain the estimators of those 
parameters. 

A technique frequently appropriate in maximun 
likelihood estimation problems is to find the maximun 
of  the  loglikelihood  function.    If the sample is 
xi ,x2 ,x3 , , xn then  the likelihood 
function of the sample is 

f(xi)   f(x2)        f(xn) 

TT 
1                                          In  xi   -  A 2 

n      ^_____     e   -   1/2   (       ) 

xiB\/2TI B 

i - F (y) 

and so the loglikelihood function may be written 

In V 

In xi - A    2       1 
- e - 1/2 (   )       

V2TT B i - F(J) 
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The derivatives with respect to the parameters 
when set equal to zero, permit to obtain A and B by- 
means of a function which was tabulated by Hald, 
(Aitchison and Brown, 1957). 

4.-APPLICATION OF PROPOSED METHODOLOGY 

The application of the truncation method has 
been carried out using a sample of visual data from 
the National Climatic Center (Asheville, Norht. 
Carolina, OSA ). 

The sample concerns the Spanish northeren coast 
, in the Bay of Biscay near Bilbao, exactly from 43.3° 
to 44. (T North and from 2.5° to 3.5° West. 

Figure 6 shows the exact location where the 
sample was obtained. 

SAN  SEBASTIAN 

Figure 6 

This sample has 572 valid observations and 277 
calms. In the histogram (figure 7) the calms are not 
included and it can be seen how it takes a lognormal 
distribution shape. 
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OBSERVATIONS 

CALMS : 277 
VALID OBSERVATIONS : 572 

Figure   7 

The lowest range of the variable has 53 
observations, when the calms are not included, and its 
probability is almost, 0.1, exactly 0.09. 

Subsequently the calms have been included in 
the sample, and the cumulative frequencies have been 
plotted in the lognormal probability paper (Figure 8). 
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This drawing shows that the probability of the 
lowest range of the variable is almost 0.4 whereas it 
hardly was 0.1 when the calms were not included. 

At this moment we should consider if the sample 
is either biased or unbiased. In the second case, 
there is no problem to include the calms in the lowest 
range of the variable, but if the sample is biased, as 
it happens in our present case, a standard fitting of 
cumulative distribution shows that the straigh line 
does not fit the data points very accurately ( see 
figure 8 •) . 

The methodology has been carried out by 
choosing two different points of truncation, ft = 0.1 m 
and "$ -   0.5 m. 

In the figure 9 we can see how both truncated 
distributions are very close whereas the untruncated 
is quite different. 
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The prediction given by then show how the 
truncated distributions are in good agreement. 
Table I represents wave heights versus cumulative 
probabilities. 

TABLE I 

Hv(m) Probability 

I II III 

1.5 0.33 0.41 0.67 

2.0 0.52 0. 59 0.79 

2.5 0.67 0.72 0.86 

3.0 0.90 
\ 

0.91 
/ 

0.92 

good agreement 

5.-Q0QPHBSS OF THE_METHQD 

In spite of the fact that instrumental data are 
.unbiased, a sample collected by a wave buoy has been 
truncated at the point 5 = 0,5 m in order to  test the 
goodness of the truncated distribution. 

So, all the data up to 0.5 m have been removed 
and the truncation method has been applied. 

Thus, we have two populations, the original 
untruncated sample and the truncated sample in which 
data below o. 5 m have been removed. 

The result is that both, truncated and 
untruncated CDF's are very close.( See figure 10 ). 
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Consequently     both    of     then     lead     to     similar 
predictions   (   see  Table  II   ). 

TABLE   II 

Hv(m) Probability 

Truncated       Untruncated 

1.5 0.57 

2.0 0.75 

2.5 0.85 

3.0 0.92 

0.64 

0.80 

0.88 

0.93 
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6,-CONCLUSIONS 

l.-In many cases visual wave samples are biased 
towards lower height values. 

2.-The lognormal model, which is usually 
appropriate for wave studies, does not fit accurately 
the sample when the calms are included. 

3.-For visual wave data the truncation method 
improves current procedures and avoids wrong 
extrapolations from observations below the point of 
truncation. 

4.-For instrumental wave data predictions of 
CDF's of wave heights of both, truncated and 
untruncated samples, are in good agreement. 

5.-The method reported herein is consistent and 
permits a more effective and accurate use of available 
visual wave data for coastal and harbour engineering 
projects. 
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