
CHAPTER 24 

ANOTHER QUASI-3D MODEL FOR. SURF-ZONE FLOWS 

A. Sanchez-Arcilla, F. Collado, M. Lemos, F. Rivero*. 

Abstract 

In this report, a quasi-3D model for nearshore circulation is presented. The aim of the 
model is an economic simulation of surf- zone flow features. 

This model relies on the efficient integration of three main modules: i) Wave propagation, 
ii) Depth-uniform currents, and iii) 1DV model for current-profiles calculation. 

The basic equations are vertically integrated up to the trough level {ztr)f assuming at 
this level the existence of a rigid-lid, which permits to replace the free surface elevation by an 
equivalent pressure. 

This device allows a continuous description of the flux below ztr, making possible the 
obtention of the flux components in the same vertical solution domain. 

The model is still under development. The results obtained, although insufficient to 
validate the code, serve to explore its capabilities. 

1.-Introduction 

A new model for surf-zone flow analysis has been developed at the University of Catalonia 
U.P.C.. It's a versatile tool, valid for a wide range of coastal engineering problems, that 
maintains cost/accuracy in the range considered nowadays reasonable (for desk-top computers). 
This is mainly due to the use of a Quasi-3D scheme ( 3D codes are still too expensive). In the 
development of the code, it has been prefered to keep some degree of vertical resolution to make 
possible, for instance, sediment transport computations. 

The code (ALF) is composed of: 

- Wave propagation module. 

- Rigid-lid 2DH module. 

- 1DV module for the vertical profiles. 

The last two modules will allow a reasonably accurate 3D resolution, with nearly the cost 
of a 2DH model. 

*   Lab.        de   Ingenierfa   Maritima,    Univ.        Politecnica   de    Cataluna,U.P.C, 
Barcelona, Spain. 
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In spite of the general formulation, herein we'll focus on the nearshore circulation, with 
emphasis on the internal consistency of the equations and associated simplifications. 

The solution domain (vertical and horizontal) of the uniform ( u ) and the depth-varying 

( u ) current components is the same. The water column is divided into three layers, coupled 
by mass/momentum transfers. The surface layer (above wave trough level) is not solved, and 

it's effects are considered through boundary conditions identical for ii and u. The middle layer 
goes from the top of the bottom boundary layer to ztr for both variables. The third layer 
corresponds to the bottom boundary layer. To begin with and for simplicity, this layer will 

not be solved explicitly, its effects considered through continuity conditions for u and ^~ at 
the interphase. Alternatively, and depending on the fit obtained in the selected test cases, the 
bottom boundary layer could be included in the solution domain. In this case, the boundary 
conditions become even simpler (for instance, no-slip at the bottom), although some additional 
complications appear due to the need to make "closure" assumptions for waves and turbulence 
near the bottom. 

The driving terms here considered are basically the incident wind waves, described in terms 
of frequency (/) and angle of incidence (#). Although it has been shown that the inclusion of 
randomness is essential for a rigorous treatment of wind-wave phenomena, for now it has been 
prefered to run a model lumped in / and 6, assuming that the wave climate is well defined by 
these two parameters. An additional reason is that most available expressions for D (the rate 
of wave energy dissipation per unit area, closely related to surf-zone circulation features) have 
been derived for waves described in this lumped manner. The wave velocity field, ut is obtained 
from linear theory. 

With respect to the numerical discretization, suffice it to say that in this initial stage, the 
simplest possible technique has been selected to concentrate on the physics of the problem. 

In what follows, the set of equations and simplifications involved in the model will be 
exposed, together with some preliminary results. 

2.- Current Modelling 

2.1- Assumptions 

- Incompressible - newtonian fluid. 

- ztr , Zb and < rj > are time-independent, (<> is the time-averaging operator at 
the wave-scale), see fig. 1. 

Figure 1. 

- Horizontal  gradients of ztr  and  z\,  are much smaller  than  the corresponding 
Reynolds stresses. 

- Horizontal gradients of vertical velocities are much smaller than vertical gradients 
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of horizontal velocities. 

- The current flow is quasi-horizontal (i.e.    vertical accelerations are negligible. 
Thus, the pressure is given by: 

P = Phydrottatic - p < W2 > (l) 

- There is no mass flow through the z& and rj boundaries, but there certainly is 
through the zlT level. 

Once all these assumptions have been made, the operators Jg *r() dz and <> will be applied 
to the mass and momentum equations. In order to avoid discontinuity problems of the variables 
describing the surface layer, the following decomposition will be used: 

u = u + ii (2) 

where: 

u : current velocity. 

ii : depth-invariant component. 

u : z-dependent component. 

The u component satisfies: 

udz = 0 (3) 

From now on, the overbar symbol on a variable will be used to denote its mean value in 
the middle layer. The symbol " " on a variable has the effect of centering the variable around 
its mean. So,it will always be: 

/ dz — 0, for every variable f (4) 

2.2- Mass conservation Equation 

The continuity equation, obtained after applying the depth-integration and time-averaging 
operators, is: 

«+^l = _G (5) 
ox oy 

where G is the net volume flux over ztr, which reads: 

G=—</    (u + u) dz > + —-<  /    {v + v)dz; 
(6) 

= Vk- < Q. > 

[h = ztr — Zfc is the thickness of the middle layer) 

Invoking the starting assumptions, G is also seen to satisfy: 

G = [»-«^r-irH*'> <7> 
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The wave contribution to the volume flux above z%r is calculated with an expression deduced 
by Svendsen (1984b), which has been later used by other authors (e.g. Stive and De Vriend, 
1987): 

<Q".>-=(l + ^-)J (8) L     pc 

d : Water depth. 

L : Wavelength. 

c  : Wave celerity. 

E : Wave energy density. 

(The second term of the parenthesis is only considered inside the surf zone) 

The current contribution to ztr is more difficult to evaluate, due to the loss of physical 
meaning of this concept in a wave averaged time scale, because in this laye'r there are then 
"dry" and "wet" instants. Nevertheless, in the currents time-scale it looks reasonable to expect 
values of this contribution to be proportiowal to the values of the current in the middle layer 
(at z = ztT) and the mean width of the surface layer. This term will be thus modelled by: 

< Q. >c= <*(< V > -zir)3 (9) 

Where a is a parameter to be evaluated. 

2.3- Momentum Conservation equation for ii 

The momentum equation obtained integrating between zt and ztr and applying the wave 
time-averaging operator is for the x-component (analogous for y): 

athu)      d(hu2)      dlhuv)      ,,,   %     ,       .,     ..„ 

m   +   aT-+   aT " /(hB>+ (" + u<**»° 

= --p^ + £[*** + *«) + yy(R*v + &,) + <tir~h>' + wx (io) 

Where: 

pt = p g     <   r\  >  ,which shows the formal equivalence between pressure and set- 
up/down. 

Rij = h vt (f^-f 7pi")i stresses which take account of the horizontal momentum transfer 

due to i?t- 

Rij ~ //"[£* (f^- 4- ^-) — U,-UJ] dz.term which takes account of the horizontal 
momentum transfer due C>t and the interaction effects of the z-dependent flow 
in the uniform flow. 

Wx = —£"-//""< vr — w2 > dz — •§-£**< u v > dzy which represents the horizontal 
gradient of driving terms due to the correlations of the wave-component velocities. 
This term doesn't exactly coincide with the usual definition of the radiation stress 
tensor 5,j (in our formulation vertical integration has been made up to ztr ). 

Comparing (10) with the equation obtained integrating up to the free surface and 
disregarding time and space derivatives of the current over ztr (and other terms that, according 
to the assumptions, are negligible), the following expression is obtained: 

Wi + < rtr >, = -2£il + (fi. + Ui(ztr))G (H) 
OXj 
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Replacing this expression in the momentum equations for u and v, the usual horizontal 
gradients of the radiation stress tensor are-«covered. This approach requires however variables 
evaluated at the trough level which is, in the surf-zone, particularly difficult. An interesting 
alternative, at present under analysis, is the direct calculation of W and G, with a suitable 
wave theory together with a semi-empirical model for < rtT > as a function of D similar to the 
formulation used by De Vriend and Stive (1987). This D formulation has been already used for 
the description of the z-dependent flow. 

With all this, the momentum equation can be written (similarly for the y-component): 

aiha)    d{hu2)    d(huv)    ,„ , 

= -"IT- + T"(5« + R" + A") + T-(5*» + *** + *•») - <n>' (12) p ox      ox ay p 

These equations, together with the continuity equation (5) , become the usual ones for the 
calculation of free surfaces flows upon neglection of the z-dependent component of the current 
and horizontal gradients of the volume flux over ztT and identifying h as the total depth. 

2.4- Momentum conservation equation for u 

Considering that: 

- Wave stresses are aproximately uniform in the vertical (Stive and Wind, 1986) 

- Horizontal gradients of turbulent stresses as well as interaction terms can be 
neglected (as suggested from an order- of-magnitude analysis) 

- uju interaction terms associated to convective accelerations do not appear to 
play an essential role. Thus it has been prefered to retain only the terms which 
make possible an efficient 1DV model. These terms which preserve the order of 
magnitude of convective terms, are for the x-component (similarly for y): 

.flu        .flu ,.„! 
VTx+VTy <"> 

- The coriolis term is also neglected, since its effects (e.g. Ekman's layer) are usually 
masked by surf-zone turbulence. 

Taking all this into account, the resulting equation for fi is: 

flu      .flu      .flu                          8       flu,  ,   <ttr-h>x       „ ,,., 
K+UTx+VTy- U{Z")G - fll^flj) +  7h = R"X (H) 

The term •§; is retained to allow transient computations (in the future) and in order to 
use t as a marching variable for stationary cases (at present). 

The u equation, though parabollic in t-z, is of elliptic-type in z. Once it has been discretized 
in time, the resulting equation is of second-order in z. Thus, only 2 independent boundary 
conditions are needed to have a "well-posed" problem. Nevertheless, at least formally, there is 
a larger number of available boundary conditions, as pointed out by Battjes et al (1988). The 
choice is not obvious, and this remains a still open problem. 

The term u(ztr)G is evaluated lagged backwards one time-step ( error O(At)). 

The term Resx(xty, z) is a residual, which includes: 

- All neglected terms (related or not to u/v ). 
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- Errors (incompatibilities) due to closure submodels. 

- Errors due to the discretization. 

As for now, to simplify the computations, the term associated to G, will be included inside 
Resx. With all this, the u equations can be written in a compact manner as: 

U-+ Ai. -—(u,-^) + f = Res        zb<z<zlr (15) 
dt dzx    dz 

Where: 

,  _   ( Ox       By\        .     rp |_ / < ttr - fj >, \ 

Iff      if,/       ' Ph\<TtT-fh>y) 

These equations (after simplifying some terms) turn out to be similar to the usual ones. 
For instance, for waves normally incident to the coast, the expression obtained adding the ft and 
i. components is analogous to the one used by Svendsen (1987) in the calculation of undertow. 

2.5- Boundary/Initial Conditions 

i )   Equations for u/v 

~ Any initial condition compatible with the continuity equation, as shown in figure 2. 

u = v = 0 
1 •£•/////////////;/'//•'////,•////., 

=0,u=0 

u=v=0   \ 
\ Breaking line 

Figure 2. 

- Boundary conditions are the same as those required by the 2D Navier-Stokes equations, i.e., 
Dirichlet or Neumann for u and v at each boundary point (compatible with the continuity 
equation). 

ii ) Equations for ti/r) 

- Initial conditions: zero velocities. 

5 = 0, Vz 6 [zh,ztr]. 

- As for boundary conditions, a summary of possible choices (some of them suggested in 
publications by authors such as Svendsen, De Vriend and Stive) is: 

At z = ztr : 

i/t~- = ^f;>; < T > , being related to the wave-height decay over Z(r, is also 

strongly related to the shape of u(z). Furthermore, there is experimental evidence suggesting 

a non-negligible value of |y at zlr (Hansen et al,1984; Nadaoka,1986). 

u{z,r); is left free, since it doesn't exist any reliable information on this parameter 
in the state-of-art. 
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At z — zi : 

If zt coincides with the upper limit of the bottom boundary layer, then u(zt) and §7(zt) are 
obtained from a closure submodel for the bottom boundary layer imposing continuity at Zj,. 

If ZJ, coincides with the bottom (zero-intercept level), the no-slip condition u(zj,) = 0 appears 
naturally, although its use requires an explicit specification, inside the boundary layer, of 
poorly-known variables such as the eddy viscosity profile and the correlation (product) of wave 
velocities. 

For now, in order to simplify the numerical development attention will be focussed on the 
middle layer. The available boundary conditions are (according to what has just been presented) 

u(zj), §7(z») and U(z(r), all of them obtained with closure models. These condition plus an 

externally obtained Res, give an over-determined problem. Assuming known values for u/v 
and vt there are 3 possible options to solve this problem: 

a) Choosing 2 boundary conditions and assuming Res = 0 

b) Parameterizing u(z^) and f^zt) as a function of u. (shear velocity) and using this 
free parameter to satisfy the third boundary condition (see Stive and De Vriend, 
1987). 

c) Inserting in the definition of Res an extra degree of freedom in order to 
accomodate the third boundary condition. 

Option c) has been initially selected, since it seems the cheapest way to apply 
the three boundary conditions. This choice requires Res to be kept in the permissible range, 
which in practical terms, means relatively small values that must verify at the same time the 
compatibility condition /*" Res dz = 0, which appears integrating vertically the momentum 

equation for u. In fact, defining / = /z*"u dz, the depth-integrated equation for u gives: 

: +A f-(•/,£) + f h= J'"Res dz (16) 

Assuming that u(t = 0) = 0 and considering i/t|j = *^- in zi, and ztT, V< (2 
Neumann-type boundary conditions ), it can be seen that a necessary and sufficient condition 
for / = 0 (the integral condition that must satisfy u by definition) is J^"Res dz = 0. 

3.-Numerical Solution 

3.1.- Equations for u 

The unknowns are u,v and p( (equivalently < ij >). The available equations are 
continuity and the x and y momentum equations (vertically integrated and time-averaged). The 
equations are solved with an explicit finite-differences method based on a MAC-type grid (see 
figure 3). The solution algorithm uses an upwind and Euler-type discretization (SOLA-type) 
allowing for variable h and vt • 

Figure 3. 
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The u/5 interaction effects are considered via Rij and < f >. Initially, all terms related 
to u/v are assumed zero, when solving the u equations. The possible a posteriori correction 
effects have not been evaluated yet, leaving this as a still open point. 

3.2- Equations for u 

Using a forward Euler-type discretization for the time-derivative (error O(Ai)): 

£="       "" (17) 
dt At K    ' 

-*n+1    r 
We obtain an equation for u      =u((n + l)Af-) which turns out to be a set of linear coupled 

second order ordinary differential equations for u/v. 

A, r+1 - j-(M "«~-) = *"(*) * < z < *«r (18) 

Where: 

,4, = I + At A 
-     n (19) 

iJ" = u   + At (-T" + 5M  ) 

The solution technique for this set of equations relies on essentially, three ideas: 

i) Uncoupling the u/tJ, equations with an adequate change of variable w = Vtt, so that: 

At = V AV~l        with      A = ( A
0'     °  J ; Alt X2cR. (20) 

This change of variables may not always be possible, with cases in which the At eigenvalues 
can be complex or where it cannot be diagonal (in which case it should be replaced by the 
corresponding Jordan matrix). However, the numerical treatment is essentially identical in 
all cases, so that without a significant loss of generality, it will be suposed that this kind of 
situation will never arise in practice. On the other hand if |J = 0 or §§ = 0, the equations be 
come automatically uncoupled. The resulting equations can thus be written as: 

awi+^{K,(z)^-) = ri(z)        . = 1,2 (21) 

ii) The use of a power series descomposition to reproduce the vertical variation of variables such 
as: 

<*) = YJ
a>zi <22) 

vt(z) = ]T 6,- z' (23) 
i=o 

Res(z,y,z) = Res(x,y)(^-^-z) (24) 
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Res(x, y) represents the extra degree of freedom inserted to adjust the redundant 
boundary condition since it is mainly associated to neglected terms. The variation of Res(x, y, z) 
with z has been assumed linear (simplest possible solution satisfying the integral condition). 

The power series technique is, among other possible choices, one of the simplest 
and cheapest, presenting advantages over a finite-differences scheme in z. The reason is that 
with a power series approach an analytical solution is obtained, whose precission and cost are 
controlled by the number of terms considered allowing an increase of the vertical resolution 
where desired in line with the quasi-3D philosophy. An additional advantage is that this 
approach allows recoveryine expressions comparable to the polynomial solutions u/v proposed 
elsewhere in the literature (see De Vriend and Stive, 1987; Svendsen, '87 '88 '89) 

iii ) Aplication of the power series approach to the uncoupled ordinary differential equations 
associated to the new variables tu<. With this, a recurrent relationship is obtained for the w 
coefficients: 

•i+7 = /(oi+i,o,)        i = 0,l n- (25) 

These are n-1 equations with n-t-1 unknowns. Additionally there are three extra equations 
arising from the boundary conditions for < ftr >;, w± and < n >;• The missing unknown, 
needed to balance the number of equations and unknowns is provided by the degree of freedom 
associated to Re$i(x,y). 

This system of equations is only slightly more expensive than existing 1DV models, since 
if the equations are adequately ordered, the matrix associated to m's unknowns is aproximately 
lower-triangular. 

4.-Closure Submodels 

Pre -processing | Closure submodels  —  

0/v   eqsT}— -- 

u/v    eqs7| ' •  

Post-processing 

Figure 4. 

In this section, some closure submodels will be briefly described, since they are similar 
to other existing state-of-art models. These submodels, although related, will be separately 
presented (see figure 4). All closure submodels not mentioned below can be considered identical 
to those used in De Vriend and Stive (1987). 

4.1- Wave Propagation 

Wave propagation properties are computed with a pair of equations for the wave number 
vector K , obtained from the Kinematic Conservation Principle, together with a third coupled 
equation for the amplitude "a", obtained from the energy balance equation (see Yoo, 1986; 
Yoo and O'Connor, '86a,b). The numerical solution is based on a classical finite differences 
scheme, with a mesh as schematized in figure 5. This closure submodel reproduces adequately 
and at reasonable cost wave/current interactions, refraction/diffraction phenomena, and energy 
dissipation. The current driving terms are considered to be proportional to D (Dingemans et 
al,1987), which in turn is computed by means of the formula proposed by Battjes and Janssen 
(1978). The trough level, ztr, is obtained using cnoidal theory. 
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K •-k„ 

Figure 5. 

4.2- Eddy "Viscosity 

To model i/,(z) the simplest possible approach (based on an algebraic model) has been once 
again selected. This algebraic model (see for a review De Vriend and Kitou, 1990), includes the 
contributions of breaking waves and currents (influenced by the presence of the waves). The 
ut value satisfies the relation; f,* = vc

7 + ivJ, equivalent to adding the corresponding values 
of K (turbulent kinetic energy) for waves and currents (Deigaard et al,1986). Following De 
Vriend and Stive (1987), the vertical profile of vJz\ is assumed constant in the upper half of 
the middle layer and quadratic in the lower half, although in both cases the profile is modelled 
as a function of the shear velocity enhanced by wave-effects. The profile of nr(*) is assumed 
constant in the whole middle layer, as a function of (£-)• (Svendsen,1987). 

The evaluation of turbulent stresses remains nevertheless, an open problem that must be 
solved in a near future, in view of their strong influence on vt. The crucial effect of e, on the 
vertical profile of u can be easily illustrated by solving the homogeneus equation for u>;, which 
looks as: 

A „+_(*,(.)_) = „ (26) 

Table 1 shows a summary of the wide range of possible expressions for w(z). 

Tabla 1: Illustration via of homegeneous eq. for w 

K.W —J »(•> 

ctnt > 0 > 0 Exponential 

ctnt > 0 < 0 Sinusoidftd 

Linear =0 logarithmic 

cnadratic Varying Varying 
(dep. on BC and A) 

It is important to remark that although the order-of-magnitude analysis carried out in 
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previous sections assumed equal values of the eddy viscosity for the horizontal and vertical 
directions (see Svendsen, 1988), several authors have proposed different values. As a matter 
of fact, some references suggest the horizontal vtH two orders-of-magnitude larger than the 
vertical vtv (see De Vriend and Kitou, 1990). 

4.3- Boundary conditions 

The expression considered for the shear stress < ffr > is very similar to the formulation 
proposed by De Vriend and Stive (1987). 

The shear stress < f), > is modelled using the formulation of Nishimura (1983), because of 
its ability to reproduce adequately the directional features of this stress (Yamaguchi, 1988). 

To evaluate u(zi) there are several available options, though none of them appears, at this 
stage, to be very convincing. Conceptually, it seems that the clearest solution would be to 
solve the middle and bottom boundary layers in a coupled way, imposing a non-slip condition 
at the real bottom. This approach, however, as previously indicated presents some additional 
difficulties. As a starting point, u(z&) will be derived from the identity u{zb) = it-f u(z&), with 
5 obtained from the depth-averaged equations, and u(zt) given by a wall-law'profile: 

Ui(z) = ^-log(^- z) (27) 

where: 

«., = (7). 
£ = 9.0 (28) 

K = 0.41 (Von Karman's constant) 

5.-Validation 

To begin with, it must be stressed that the calibration/validation processes is far from 
finished. The present status can be summarized as follows: 

- The code for the 1DV model is already developed, but has not been validated yet. 

- The two modules (2DH + 1DV) have not been run yet in a coupled way. 

- For the time being, results can only be interpreted in a qualitative manner. 

In any case, the list of test cases as follows: 

2DH CODE (u): 

- Normal and oblique incidence on a plane beach (setup,uj) (Stive and Wind, 1982; 
De Vriend and Stive, 1987). 

- Circulation  behind a detached breakwater  (Nishimura et al,   1985;  Horikawa, 
1987). 

- Circulation on a variable bottom topography (Noda, 1974; Yamaguchi, 1986). 

1DV CODE (5): 

- Undertow (Hansen and Svendsen, 1984; Stive and Wind, 1986; Nadaoka, 1986). 

- Long-shore Current (Visser, 1984). 

The only case here presented is the 2DH nearshore circulation over a symetric concave 
topography with normal wave incidence (Noda, 1974; Yamaguchy, 1986). It has been selected 
because it is a particularly interesting 2DH problem whose bathymetry can be numerically 
generated. The obtained results (see figure 6 and 7), are qualitatively similar to those reported 
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-   -    ---I 

Ji 

Figure 6 

- Bottom topography and associated 

wave number vector field for the Noda, 
1974 test case. 

Figure 7. 

Current velocities field for the same 

case of figure 6. 



328 COASTAL ENGINEERING-1990 

by other authors, showing the presence of two circulation cells near the breaker line, together 
with another pair of flatter cells near the shoreline. 

6.-Conclusions 

A newly developed quasi-3D model for nearshore circulation has been presented. The most 
outstanding features are: 

- Same solution domain and boundary conditions for both current-flow components, H and 
u (so as to give a consistent physical and mathematical meaning to the algebraic sum of both 
components). 

- Some degree of interaction between u and u is retained. 

- A new treatment for solving the depth-varying component is proposed (allowing local 
increases in resolution where desired). 

- The same grid is used for waves and currents, avoiding thus, spurious effects due to 
interpolations. 

Finally, it's important to point out that a certain number of points remain still open. 
Among them, the following are worthwhile mentioning: 

- Specific of the model: 

a ) Effects of u / u interaction. 

b ) Effects of G term (Volume flux over ztr). 

c ) Effects of introducing the residual Res (to accommodate the third boundary 
condition and other uncertainties). 

d ) Effects of W evaluated up to ztr 

- General for nearshore circulation code: 

a ) Empirical modelling of wave characteristics inside the surf-zone. 

b ) Use and validation of an eddy viscosity model inside the surf-zone. 

c ) Effects of solving in a coupled way the middle and bottom boundary layer. 
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