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ABSTRACT 

A robust algorithm is presented which is capable of embedding a deterministic 
sequence of waves into a randomly generated wave train without changing the 
stochastic properties of the random waves. 
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INTRODUCTION 

A frequent request by sponsors of research projects in maritime laboratories is 
to analyze the behavior of a structure for a given design sea state. During the 
years, the testing of physical models in wave flumes has proven to be both 
cost-effective and reliable. Physical modelling of random waves requires 
generating random wave trains with a specified variance spectrum. 

Funke and Mansard (1987) pointed out that present technology now makes it 
possible to treat the wave generator and the digital simulation technique as two 
essentially separate problems in wave generation. During the last decade, digital 
to analog numerical simulations have become extremely efficient. Several methods 
are available for generating these numerical simulations. Borgman (1969) identified 
two fundamental methods: 1) the superposition of sinusoidal waves; and 2) the 
filtering of white noise. Hudspeth and Borgman (1979) demonstrated the 
advantages of using FFT algorithms for numerical simulations. Tuah and Hudspeth 
(1982) introduced deterministic (DSA) and non-deterministic (NSA) spectral 
amplitude models for random wave simulations based on FFT algorithms. Medina 
and Sanchez-Carratala (1988) compared the different methods available for the 
numerical simulation of random waves. 

At the present, the physical simulation of random waves having a specified 
variance spectrum in a wave flume may be accomplished by using a variety of 
techniques. However, sometimes research sponsors want to include a deterministic 
sequence of waves in the random wave simulation used to test structures. For 
example, sponsors may want to know how a particular wave group that occurs in 
a random wave simulation that is defined by a specified variance spectrum affects 
the performance of a structure. This request usually requires a laborious wave by 
wave analysis of many random wave simulations searching for a sequence of waves 
that almost resembles the requested one. An alternative method to this searching 
technique is to use "conditional simulation". This alternative method generates a 
numerical random wave simulation that has a specified variance spectrum and also 
includes the deterministic sequence of waves requested by the sponsor. A robust 
algorithm is derived for this "conditional simulation". 

CONDITIONAL SIMULATION 

Conditional simulation is a technique for generating a numerical realization that 
includes a given deterministic sequence of waves and that has a specified variance 
spectrum. This technique simulates realizations for a stochastic process that is 
defined by a specified variance spectrum and that contain a deterministic sequence 
of waves which occur at a prescribed time in the realizations. The method 
presented here may be used either in the time domain or in the frequency domain. 
In either case, the method is a two-step procedure. 
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The first step requires that a random time sequence be simulated that has a 
specified variance spectrum, Su(f). This simulation is called an "unconditional time 
sequence" and is denoted by iju(t). Figure 1-a shows an example of an 
unconditional time sequence obtained using a DSA algorithm (cf., Tuah and 
Hudspeth, 1982) and a specified Goda-JONSWAP variance spectrum (cf., Goda, 
1985) using: 7 = 1, m0=l m2 and fp=0.27 Hz. The total number of points in the 
time sequence is N=2048 and the time interval At=0.1 seconds. 

The second step is to embed the deterministic sequence of waves into the 
unconditional time sequence at a prescribed point in time. These two steps may be 
done either in the time domain or in the frequency domain. The deterministic 
sequence of waves is called the "embedded sequence" and is denoted by %(t). The 
realization that contains the "embedded sequence" is called the "conditional time 
sequence" and is denoted by )jc(t). 

Figure 1-b shows a deterministic wave group or the "embedded sequence" that 
is to be embedded into the unconditional time sequence shown in Fig. 1-a. The 
time interval At of the "embedded sequence" must be the same as the time interval 
of the unconditional time sequence (e.g., At=0.1 seconds in Fig. 1). In Fig. 1, the 
first and last values of the embedded sequence J76(t) are to be embedded at the 
prescribed times ^=961 and n2 = 1088, respectively, of the unconditional time 
sequence i7u(t). The total difference between the two prescribed time values is 
j'=n2-n1 = 127. Therefore, the total number of values of the embedded sequence is 
»>+l = 128. 

Finally, Figure 1-c shows the conditional time sequence containing the 
deterministic wave sequence embedded in a random wave simulation having a 
specified variance spectrum. The total number of points (N=2048) and the time 
interval (At=0.1 seconds) are the same for both iju(t) and jjc(t). Near the two ends 
of the embedded wave group, the conditional simulation algorithm modifies the 
unconditional time sequence r/u(t) in order to maintain the correlation structure in 
the conditional time sequence r;c(t) in accordance with the specified variance 
spectrum Su(f). 

TIME DOMAIN ALGORITHM 

In the time domain, the conditional simulation algorithm inserts the embedded 
sequence rjc(t) into the unconditional time sequence rju(t) between the two points of 
time n[ and n2. The remaining values of the unconditional time sequence are 
modified in order to maintain the correlation structure that is associated with the 
specified variance spectrum Su(f). 

\The conditional time sequence may be obtained from (cf., Hudspeth et al. 
990): 
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Figure 1. Example of a Conditional Simulation: 
a) Unconditional Time Sequence; b) Embedded Sequence; 
c) Conditional Time Sequence. 
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nefnjAj]-T!c(ii4t)=tie(nAt) 

nCfn^]-. iic(n&)=riu(n&)+ C12X 

'12=[Cn-n1«Cn-n,+l»-»Cii-B, J 
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(1) 

(2) 

(3) 

where c^ is the covariance at lag | k| At associated with the specified variance 
spectrum Su(f); and X is the solution of the following system of equations: 

CnX=ve-vu (4) 

where: 

v,= [ 11,(14*;)... le^)]1 

(5) 

(6) 

v^fti^n^)... T,^)]1 (7) 

where Cn is the covariance matrix; ve is the vector of values of the embedded 
sequence; and vu is the vector of values of the unconditional time sequence at the 
prescribed time values where the embedded sequence is to be inserted. 

The conditional simulation algorithm inserts the deterministic sequence of waves 
into the unconditional time sequence and modifies only those values of the 
unconditional time sequence that are near the two ends of the embedded sequence 
(vide Fig. 1). For the values of the unconditional time sequence that are located 
far from the interval of the embedded sequence, the values of the time lags | n-nj |, 
|n-ni + l |,..., |n-n2| are large and the values of the covariances in the matrix C12 

associated with these large time lags are small. Consequently, at these large values 
of time from the embedded time interval Eq. 2 becomes, approximately: 

*!>&)= nu(n&)+ C12X ~ T5u(nft)+ [0...0 ] X= r]a(nM) (8) 
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and the differences are small between the unconditional and the conditional time 
sequences far from the time interval of the embedded sequence. 

FREQUENCY DOMAIN ALGORITHM 

In the frequency domain, the conditional simulation algorithm for inserting an 
embedded sequence ijc(t) into an unconditional time sequence rj^t) may be shown 
to be equivalent to the time domain algorithm (cf., Hudspeth et al. 1990). The 
advantage the frequency domain algorithm is that FFT algorithms reduce 
substantially the computer time needed to obtain a long conditional time sequence. 

The unconditional and the conditional time sequences may be expressed as a 
superposition of sinusoidal waves with frequencies which are multiple integers of 
the discrete frequency interval Af = l/(NAt) according to 

nu(nAt)=52(affi-ibm)exp(i27tmiVN) W 
m=0 

ne(n&)= £ <aa- i pm)exp(i2nmn/N) <10> 
m=0 

The FFT coefficients of the conditional time sequence {am and 0m} may be 
obtained from the FFT coefficients of the unconditional time sequence {&„, and bm}. 
These coefficients are related by 

m 
+c'nx (ID 

where X is the solution of the same system of equations given by Eq.4 that were 

used for the time domain algorithm; and C'n is given by: 

C(j=Sj[mAf)Af 
cos(27tmn1/N)  ...   cos^icmiyN) 

sin(2mmn1/N)  ...   sin(2jimn2/N) 
(12) 

APPLICATIONS 

The solution of Eq. 4 requires two constraints: 1) a goodness-of-fit constraint 
to the specified variance spectrum and 2) an ill-conditioned constraint for matrix 
C„. 
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Firstly, the goodness-of-fit to the specified variance spectrum must be 
constrained by both the length and characteristics of both the embedded 
deterministic wave sequence and the unconditional time sequence. 

Secondly, the covariance matrix may become ill-conditioned for typical ocean 
spectra because of the relatively low energy content of the specified variance 
spectrum at both low and high frequencies for relatively long simulations at 
relatively small time intervals of At. This combination of low energy levels and 
relatively long simulations at relatively small time intervals may produce numerical 
instabilities when inverting the ill-conditioned covariance matrix Cu in Eq.4. A 
similar numerical instability was described and solved by Medina and 
Sanchez-Carratall (1988) using robust AR models for ocean spectra. Therefore, 
it is reasonable to use their solution in order to obtain a robust method for the 
conditional simulation of random ocean waves. 

The robust method introduces into the specified variance spectrum a very low 
level of white noise that is acceptable for any practical application. If nio is the 
specified variance, satisfactory results were obtained by introducing a white noise 
level of 0.0025mo which reduced the original specified variance spectrum, Su(f), by 
a factor of 0.9975. The modified specified variance spectrum which is satisfactory 
for practical engineering purposes is given by Su'(f) = 0.9975 m0 + white noise. 
Finally, the modified specified variance spectrum Su'(f) is used in Eqs.3,5 and 12 
instead of the original specified variance spectrum Su(f). The relative advantages 
of the robust method is illustrated below for typical ocean spectra. 

In order to illustrate the stability of the robust method, consider removing a 
short piece of record from an unconditional time sequence and then inserting the 
same short piece back into the same unconditional time sequence at the same place. 
In this case, the vectors ve and vu in Eq.4 are equivalent and the resulting 
conditional time sequence -q0 is equal to the unconditional time sequence JJU. 

If the values of the embedded sequence shown in Fig. 2-a are modified only by 
a small amount, then the conditional and the unconditional simulations should differ 
by only the same small amount. However, that is not always the case if the matrix 
Cu becomes ill-conditioned. For example, if the values of the short piece of record 
shown in Fig. 2-a between 80-85 seconds are truncated to centimeters (a reduction 
of about 1%) and then embedded back into the unconditional time sequence at the 
same position in time, the resulting conditional time sequence shown in Fig. 2-b, 
is unsatisfactory. However, by using the robust method with a level of white noise 
of only 0.0025m<), the resulting conditional time sequence shown in Fig. 2-c differs 
only slightly from the unconditional time sequence. We note that any wave record 
from a laboratory simulation or from the ocean may be contaminated by levels of 
noise equal to or larger than this amount. Therefore, Su(f) and Su'(f) are equally 
acceptable for representing the variance spectrum of ocean waves. Figure 1 
illustrates an application of the robust method for embedding a wave group. 
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Figure 2. Comparisons of Conditional Simulation Methods: 
a) Unconditional Time Sequence; b) Example of Unstable 
Conditional Simulation; c) Example of Stable Robust 
Simulation. 
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The goodness-of-fit to the specified variance spectrum is influenced by several 
variables. First, the lengths of both the embedded sequence and the unconditional 
simulation must be considered. The wave group (p+1 = 127) shown in Fig. 1-b has 
been embedded into unconditional simulations having total lengths of N = 512, 
1024 and 2048. These unconditional simulations are realizations from a specified 
Goda-JONSWAP variance spectrum having spectral parameters: 7=1, mo=l m2 

and fp=0.27 Hz. The variance of the embedded wave group is 2m,,. Table 1 
compares the relative errors of the spectral moments computed from the conditional 
and from the unconditional time sequences as a function of the total length of the 
simulation with the length of the embedded sequence held constant (v+1 = 127). 

TABLE 1. Effect of N on Errors in Spectral Moments Between t^, & % 

Moments N=512 N = 1024 N=2048 

m0 17.6% 11.6% 4.8% 

m, 16.0% 10.1% 4.3% 

m2 13.9% 8.4% 3.5% 

The goodness-of-fit to the specified variance spectrum improves as N increases 
relative to the length of v. Figs. 3-a&-b compare the specified variance spectrum 
for the unconditional simulation with the variance spectrum for the conditional time 
sequence for N=512 and for N=2048, respectively. 

The goodness-of-fit to the specified variance spectrum must also be constrained 
by the stochastic properties of the embedded sequence with respect to the specified 
variance spectrum. One of these stochastic properties is the contribution of the 
embedded sequence to the specified variance spectrum. Table 2 compares the 
relative errors of the spectral moments computed from the unconditional and from 
the conditional time sequences for the conditional simulation in Fig. 1 as a function 
of the contribution of the embedded sequence to the specified variance spectrum 
for an unconditional time sequence of length N=2048. 
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Figure 3. Specified Variance Spectrum and Conditional Time 
Sequence Spectrum for: a) N=512; b) N=2048. 
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TABLE 2. Effect of contribution of embedded sequence to specified variance 
spectrum on errors in spectral moments between ??„ & r;r 

Moments m„/2 m0 2m0 4m0 

m0 -5.6% -2.1% 4.8% 18.5% 

m, -5.1% -1.9% 4.3% 16.8% 

m2 -4.8% -2.0% 3.5% 14.5% 

The goodness-of-fit improves as the contribution of the embedded sequence 
becomes more consistent with the specified variance spectrum. 

SUMMARY AND CONCLUSIONS 

A robust method is presented for the conditional simulation of random ocean 
waves having a specified variance spectrum and containing a deterministic sequence 
of waves at prescribed point in time. The addition of a low level of white noise 
(variance 0.0025m0) to the specified variance spectrum for the unconditional 
simulation avoids the instabilities that are due to inverting an ill-conditioned matrix. 
The effects of the length of the embedded wave sequence i>+1 compared to the total 
length of the simulation N and of the contribution of the embedded wave sequence 
to the specified variance spectrum were illustrated for a Goda-JONSWAP spectrum. 
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