
CHAPTER 18 

NEARSHORE CIRCULATION WITH 3-D PROFILES 

lb A. Svendsen,1 Member, ASCE and Uday Putrevu,2 Student Member, ASCE. 

ABSTRACT 

A model that predicts the depth variations of wave generated currents within 
the framework of a 2-D depth-integrated surf-zone model is described. The equa- 
tions are formulated and solved for the case of a long, straight coast. The model 
is used to demonstrate that the effects of current refraction are weak and to deter- 
mine the variation of the 3-D spiral shaped current profiles across the surf-zone. 
Finally, we show that the mixing coefficient required to get realistic variations 
of the longshore current is much larger than what the turbulence measurements 
can justify. 

1. INTRODUCTION 

The present paper describes a hydro dynamical model for 3-D wave generated 
currents in the nearshore region. The model is based on the idea of using a 2D- 
horizontal, depth integrated description to determine the integration constants 
in the analytical solutions for the vertical variation of the horizontal velocities. 
This idea was developed for the 2D cross-shore circulation by Svendsen & Hansen 
(1988). Independently, Davis (1987) pursued a similar idea for wind generated 
currents. 

Quasi 3-D local solutions for current profiles were derived by deVriend & Stive 
(1987) based on dividing the flow into a primary and a secondary component. 
The more general approach used here was developed by Svendsen k. Lorenz (1989) 
(S & L) who used a perturbation expansion to establish the equations. Concen- 
trating on the longshore current profiles, they found that the equation normally 
used for the depth averaged longshore currents actually applies to the first ap- 
proximation to the bottom velocity. The longshore velocity above bottom level 
increases uniformly, yielding somewhat (10-20%) larger depth averaged velocities 
at all locations than found by the classical depth integrated models. 

In the present paper, the method of S & L is combined with the energy and 
cross-shore momentum equations to form a comprehensive computer model, the 
solution of which predicts wave heights, set-up, and, longshore and cross-shore 
currents and their variation over depth. For simplicity, the model equations are 
only established for a long cylindrical coast. This implies Snell's law is valid 
and it is possible to incorporate the wave-current refraction in the energy and 
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Figure 1: The three layer model concept 

momentum equations in a simple manner. The basic equations of the model are 
described in Sections 2 and 3. This includes a description of how the bottom 
friction is incorporated as a boundary condition in the model. 

On a long straight coast, the model equations become ordinary differential 
equations in x, the cross-shore coordinate. The energy and momentum equa- 
tions represent initial value problems solved by specifying wave conditions at the 
seaward boundary. The longshore momentum equation is solved as a boundary 
value problem. 

The system contains a number of features not previously included in such 
models though for reasons of limited space only a few of them can be analyzed 
and discussed here. In Section 4, we show that the wave-current interaction is 
really not modifying the wave motion or the current motion significantly even 
though the longshore current may be a substantial fraction of the wave speed. 
This is partly because the refractions due to the longshore and the cross-shore 
currents counteract each other, partly because the angle of incidence of the waves 
is usually small. 

We also show the full cross-shore array of the 3-D spiral shaped current profiles 
corresponding to a given wave situation. 

Finally, we confirm the logical conflict that still remains between which eddy 
viscosities are reasonable for the cross-shore circulation (i/t ~ O-Olhy/gh) and the 
many times larger coefficient for horizontal mixing required to achieve realistic 
variations of the longshore currents, particularly outside the surf zone for which 
we can find no justification in our knowledge about the turbulence characteris- 
tics. Though it has been suggested (Thornton & Guza, 1986) that on natural 
beaches this paradox may be accounted for by including the irregularity of wave 
breaking, that explanation does not cover experiments with regular waves where 
the effect seems equally strong (e.g., Visser 1982, 1984). Further examination of 
this problem would be desirable. 

2. BASIC EQUATIONS FOR THE CURRENT VARIATION OVER DEPTH 

The three layer model concept 

The general approach is to utilize the concept of a 3 layer flow situation first 
suggested by Hansen & Svendsen (1984) and later used by Stive and Wind (1986) 
and Svendsen et al. (1987) (Fig. 1). 

This approach assumes that there is a (mainly oscillatory) boundary layer at 
the bottom, within which the turbulence characteristics are dominated by the 
locally generated turbulence.   In 2D cross-shore circulation, this assumption is 
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supported by the variation of current measurements and leads to very accurate 
results and there is no reason to expect the situation to be different in the general 
3D case. 

The method concentrates on the central or core layer, between the boundary 
layer and the wave trough. The third layer, between wave trough and wave crest, 
is considered separately from the middle layer because in that region there is 
water only part of the time, so we cannot separate the total particle velocity into 
an oscillatory and a mean (current) component. 

In the central layer it is assumed that the turbulence is primarily produced 
by the breaking process. This means that it is both more intensive and has a 
larger length scale than the turbulence in the bottom boundary layer (Svendsen 
et al. 1987). This, in turn, justifies the assumption of a higher eddy viscosity vt 

in the central layer, based on the Prandtl-Kolmogorov assumption that 

vt ~ ty/q (1) 

where q is the turbulent kinetic energy. 

The basic equations 

The general equations for the wave averaged (current) motion below trough 
level were derived by S & L. For a steady situation on a long straight coast, where 
d/dy — 0 (y being the shore parallel coordinate and x the shore normal coordinate 
pointing shorewards, see Fig. 2) those equations reduce to the following in the x 
and y directions, respectively: 

d(   du\    a ,—   —    A   du^m   au2 

dz\ tzdz        dx V w       » ' » /  •      dz dx 

and 

dz \ tz dz) dx dz dx       dx\txdx) 

Here U(x, z), V(x, z) are the cross and longshore current velocity components and 
uw, vw, ww the oscillatory "wave" velocity components whose mean is zero below 
trough level. In (2) and (3) we have also modelled the turbulent shear stresses by 
introducing the eddy viscosity vt mentioned earlier. For later discussion we have 
distinguished between vtx and vtz. Reference is made to Fig. 2 for definitions of 
other variables. 

It is inherent in the wave averaged approach that the wave particle velocities 
uw, vw and ww are assumed known to the extent that the terms on the right 
hand side containing those parameters can be considered known. 

Then (2) and (3) are actually two nonlinear equations for U and V. In classical 
models for nearshore circulation those terms are usually neglected because they 
are assumed small. To simplify the presentation, we will also neglect the non- 
linear current terms. Furthermore, the findings from the perturbation solution 
by S & L justify that to the first approximation the horizontal mixing for the 
longshore current (last term in (3)) can be determined using the value Vj of V at 
the bottom. 

Hence, as far as the depth variation of U, V is concerned, all terms on the 
right hand side of (2) and (3) are regarded as known forcing terms provided we 
can determine Vj. We define 

d I—TT    —z-,\du. 
otix(x, z)   =   7r (ul -wl + gb) + ••   ** (4) 
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Figure 2: Definition sketch Depth contours 

aly(x,z) 
duwvw     duwww d_ 

dx 
Vtx- 

dVb 
(5) dx dz        dx \     dx 

This means that (2) and (3) can be integrated directly, and the solutions written 

U(x, z) = I — I alxdCdi + [ — d( + A2 (6) 

and the equivalent for V with aiy instead of alsr. 
Thus (2) and (3) can be expressed in closed form for arbitrary <xx and vtz. To 

simplify discussions, however, we will in the following assume vu(x,z) = vu(x) 
and ai(x,z) — ct\{x). Hence, (6) simplifies to 

U(x,z) 
2 vtz 

V(x,z) = i^e + —t + Bi 
Vtz 

Bx, 

t + A2 

2 vu Vtz 

(7) 

(8) 

where A\, A2, B\ and B2 are arbitrary functions of x to be determined from the 
boundary conditions discussed in the following and £ = z + h0 is the height above 
the bottom. To determine the four constants Ai, A2, B\ and B2 we need two 
conditions for each of the two velocity components U and V. 

The bottom boundary condition 

The first condition used is related to the variation of U, V at the bottom. 
Strictly speaking, the bottom condition is U, V = 0. Due, however, to the 
assumption of a boundary layer with relatively low eddy viscosity a large value 
£/(,, Vi of U, V exists at a short distance above the bottom (the "top" of the 
boundary layer). Hence, the mean bottom shear stress in the middle layer is 
related to Ut,, Vj and to the oscillatory motion uwi,, wwj at the bottom. We 
assume here that this relation is given by (i = 1, 2 corresponding to the x, y 
components) 

m(t) = \pfuhi(t) I ««(<) I (9) 

where «;,,•(£) is the ensemble averaged bottom velocity, | MJ,- | the numerical value 
of ua and / is a (constant) friction factor (see, e.g., Jonsson 1966). For uj; we 
have 

«w - Uki + uwU (10) 
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where Ubi = (Ub, Vb) and uwhi = (uwb, vwb). 
To determine the time mean of Ui(t), we also assume that 

and define, for short 

uwbi ~ uoi COS 9 (9 = LOt — kx) 

Uo = | ^i  |, Uk =| Ubi 

(11) 

(12) 

The mean shear stress rbi = TJ,,-(<) is then determined by substituting (10), 
(11) and (12) into (9) and time averaging. 

Liu and Dalrymple (1978) derived expressions for TJ; for the special cases 
Ub/u0 ~> 1 (strong current) and Ut,/u0 <C 1 (weak current). 

Here we present a more general formulation for arbitrary values of Ub/u0 and 
also arbitrary angles, /J,, between the current direction and the wave direction. 
Performing the averaging operation we introduce the parameters 

Pi  = W) — J   + 2— cos 0 cos JJ, + cos2 9 
u0J u0 

1/2 

ft   =   (3x{t)cos,9 

(13) 

(14) 

It then turns out that rj; can be written, without any further approximations, 
in the simple form 

Tbi - -ZPfUa [/3iUbi + ftuoi] (15) 

which expresses T;,, as the sum of two contributions, one in the direction of the 
current vector £/{,» with weight ft, the other in the direction of the wave particle 
motion with weight ft. It is apparent from (13) and (14) that ft and ft are 
functions of two variables: Ub/a0, the current strength relative to wave parti- 
cle velocity amplitude and /< the angle between wave and current vectors. The 
variation of ft and ft with those parameters is shown in Fig. 3. 
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The expression (15) of course includes the cases of very weak and very strong 
currents. Though it is not apparent from (15), the case of Uu —* 0 does yield 
m —> 0: in purely sinusoidal motion there is no mean shear stress. 

In the central layer the shear stress is given by 

Tzi ~ PVtz-Q~ (16) 

and for z —> —h0 this shear stress must equal TU determined from (15). Hence, 
combining (15) and (16) we get the mixed bottom boundary condition: 

dUi 

3z 
f(u0, Ui) = 0     z = -h0 (17) 

or, if we define 

1 f f, 
2 Viz 

bi   =   \—fou0Uoi (18) 

and accept the slightly inconsistent nomenclature of (dUi/dz)-h0 = dUu/dz then 
we can write (17) as the inhomogeneous mixed pseudo-linear condition for Uu 

—— - aUbi = bi     z = -h0 (19) 
oz 

This is the first of the boundary conditions used for the depth variation of £/,-. 
Equation 19 is not quite linear because fli and /32 depend on Uu- It may also be 
noted that this implies that we can specify neither £4 nor T& at the bottom. It is 
the combination of Ub and TJ, imbedded in (19) that is controlled. 

Applying (19) to the solutions (7) and (8) for U and V yields 

Ui = ~e + (1 + <)Uu + bit (20) 
^ vtz 

which expresses the vertical variation of the current velocity in terms of the un- 
known bottom velocity Uu- 

The second boundary condition 

Hence, the function of the second boundary condition to be specified is essen- 
tially to determine the bottom velocity Uu- The conditions used here are different 
in the longshore and in the cross-shore directions. In the longshore (y) direction, 
the second boundary condition is equivalent to specifying the shear stress r3y at 
wave trough level. rsy can be determined from the momentum balance for the 
flow above trough level (Stive and Wind 1986). 

If the horizontal momentum flux above trough level is M^ then we have 

rsy - -^ (21) 
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However, when combining the local depth variation of the flow given by (2) 
and (3) with a fully depth integrated model to give the horizontal variation it 
turns out to be more convenient not to impose (21) directly on the depth variation 
of the current. Instead, we apply the mixed condition (19) also to the fully depth 
integrated longshore momentum equation. This results, as shown in the next 
section, in an equation for the x variation of Vj, almost identical with the usual 
equation for the depth averaged longshore current. Solution of that equation 
therefore provides VJ, and, hence, completely specifies the depth variation of the 
longshore component. 

The question that naturally arises now is the following: Why is using the 
momentum equation integrated over the total depth to determine Vj, completely 
equivalent to imposing (21) as a boundary condition for (20)? The explanation is 
the following: Determining the bottom velocity Vj, from the total depth integrated 
momentum equation with (15) included means fixing the bottom shear stress so 
that depth integrated momentum is satisfied. At the same time, the solution (20) 
for V automatically accounts for the forcing that occurs below trough. Therefore, 
(20) with VJ, determined as described will show a shear stress at trough level which 
corresponds exactly to (21) since Tsy represents the difference between the total 
forcing and the forcing below trough level. 

In the cross-shore direction, it is necessary to use a different approach. Be- 
cause the cross-shore radiation stress is almost equal to the pressure gradient from 
the set-up, the method described above for V would lead to determining the bot- 
tom shear stress r^ as a (small) difference between these two large contributions 
(see Svendsen &: Hansen, 1988). Instead we utilize that the net cross-shore flux 
Qx is zero, so that 

r<> Udz = -Q„/{ho + &) (22) f 
J-i 

where Qsx is the rr-component of the mass flux in the wave, £« is the trough 
elevation below SWL (Fig. 2). 

Notice that this approach is only applicable for a straight coast where d/dy 
and Qx are zero. On a general coast we cannot distinguish between "cross-shore" 
and "longshore" and a different procedure is required. 

3. THE DEPTH INTEGRATED EQUATIONS 

The depth integrated equations are generalizations of the H-b model for cal- 
culation of the wave height H and set-up b in the surf zone first introduced by 
Svendsen (1984). That approach is based on dimensionless coefficients for radi- 
ation stress (P), energy flux (B), and energy dissipation (D). Using Phillips' 
(1977) equations the method was extended to 2D combination of waves and cur- 
rents by Svendsen & Hansen (1986). 

In most previous applications in the past the model has been applied using the 
special form of P, B and D found by incorporating experimental data for the real 
surface profile of the broken waves and including a roller contribution separately 
(Svendsen, 1984). The method as such, however, is general and by suitable choices 
of P, B and D can represent all H-b models. That was utilized by Hansen (1990) 
who specified empirical expressions for many of the surf-zone wave characteristics 
derived form actual measurements and found, not surprisingly, that they deviate 
substantially from sine-wave values. Here we use some of Hansen's results. The 
specific values of P, B and D used will be discussed further in connection with 
the applications (section 4). 
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We assume here that the waves are locally plane so that all wave properties 
can be described by 2-D wave theory. It is then convenient to define the momen- 
tum and pressure part of the radiation stress on a section perpendicular to the 
direction of wave propagation as the scalars 

Sm   = pu2dz (23) 
J—ho 

S, = -j^ho
widz+\p9((-<y (^ 

where u2 = v?w + v2 is the horizontal wave particle velocity in the direction of 
wave propagation, <f is the surface elevation above the horizontal axes. 

We also define 
cos a smacosa  I ,    . 
sm a cos a sm a \ 

where a is the direction of wave propagation relative to the z-axis (Fig. 2). 
The radiation stress for a section with arbitrary normal vector then can be 

written 

where Sij is the Kroenecker 8. The generalized version of the dimensionless radi- 
ation stress P then is defined as 

In particular, for our long straight coast we get 

<? •? 
• cos a + • 

pgW pgH2 

pgH2' 
Pxy   =   —Y~ sin a cos a (28) 

Similarly, we define the dimensionless energy flux B by 

Efi = PgH2Bci (29) 

where Efi, the energy flux, is given by 

Efi = J_h Ui [pgz + P + -P (u2
w + vl + u£)] dz (30) 

and 

ci = c| (31) 

k here represents the magnitude of the wavenumber vector, hi. 
Finally, we define the nondimensional energy dissipation D relative to the 

actual dissipation D by 

D = B-7Fm (32) 
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The three depth integrated equations solved are the cross-shore and the long- 
shore momentum equations, and the energy equation. We introduce the defini- 
tions above into the general equations of Phillips (1977) for waves and currents, 
simplifying to the conditions of a long straight coast including SnelPs law. Fi- 
nally, the dominating terms for H and b are isolated along the same lines as 
done by Svendsen & Hansen (1986) for the 2D cross-shore case. We then get, 
neglecting a few small terms, the depth integrated equations in the following form. 

Cross-shore momentum equation 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

The desired equation for the bottom velocity Vj is found by substituting (15) 
and (20) into (38). Utilizing the findings of the perturbation solution developed 
by S & L, a first approximation to the resulting equation may be written 

d  (     , dVb\        Tr      1 dSxy 

| . -{!fl*+3l + H> *l+si}H'--(x)' 
where 

9i    = 
(                 dUi     dUE\ 
\mUbi     oxi                      j / (pgcB cos a) 

9i    = 
1   dPxx       1 dh0      1 dB              da 

— ; 7rr~', ^~,—1" tana— 
Pxx   dx       2« dx      B dx               dx 

D'   = D j (pgcB cos a) 

Energy equation 

dH2 _ 

dx 
D'+gt-H

2 1 dc      1 dB              da 

cdx      B dx               dx 

Longshore momentum equation 

d    [v        dV .       Tby       1 dSxy 
T /      vtx—dz  = —* 
dx J-ho      ox           p       p  dx 

Solution of the equations 

Tx(^
hi^raVb=~^+K (39) 

which is the differential equation we solve for VJ,. The approximation made in 
(39) is that the turbulent mixing can be represented over the entire depth by 
using the bottom velocity Vj,. The boundary conditions used for (39) are 

Vb = 0 at X — Zshore,   —• -oo (40) 

Further, two matching conditions are used at the transition point xt which is the 
point where the radiation stress starts to change. The matching conditions at xt 
specify continuity in velocity and shear stress at xt, that is: 
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where + and — refer to values immediately adjacent to xt. Outside the surf-zone, 
dSxy/dx is zero. 

4. RESULTS 

The 3D model system established above can be used to study a number of 
effects on a long straight coast which has not been analyzed previously in the 
literature. For reasons of limited space, the discussion is limited to a few mech- 
anisms. 

The numerical results will depend on the wave incidence angle a, the bottom 
slope hox (here assumed constant for simplicity, not necessity), and the way the 
wave properties are modelled, as a function of wave height, including the breaking 
criteria. Following Svendsen (1987), we have chosen to assume that the breaker 
height is given by (H/h)b — 1.11 • (hxL/h)b' . An almost identical expression was 
suggested independently by Hansen (1990). The vertical eddy viscosity, vtz, was 
taken to be vtz = Q.01h^fgh (a discussion of the eddy viscosity is given later). 
The horizontal eddy viscosity, vix, was taken to be vtx — Q.0lh-^gK/hx. 

The wave parameters- energy flux (B) and radiation stress (P)- depend on 
the shape of the surface profile and the area of the roller (Svendsen 1984). The 
shape of the surface profile is measured in terms of the dimensionless parame- 

ter B0 defined as B0 — (i]/H)2. In the present applications these parameters 
have been derived using the B0 suggested by Hansen (1990) and modified for 
waves with a current as in Svendsen & Hansen (1986), and the roller area found 
by Okayasu (1989). The dimensionless energy dissipation rate is taken to be 
the same as in a bore. The reason for choosing this set of parameters is that 
in this way we include the actual characteristics of broken waves. Usually, this 
model gives the best prediction of the set-up, which means of dSxx/dx. Since Sxy 

through (25) and (26) is related to Sxx, it is evident that this also potentially 
implies a better prediction of the driving force for the longshore current. This 
point is important though it is usually disregarded in the discussions of surf zone 
wave theories and longshore currents. 

Wave-current refraction 

Many of the measurements of longshore currents both in the field and in the 
laboratory show very high velocities. The steeper the local bottom slope, the 
higher the velocity. For a coast with a slope of 1:30, velocities typically corre- 
spond to a Froude number of 0.2-0.4 or longshore velocities of 20-40% of the wave 
celerity. Visser in his experiments on 1:20 and 1:10 slope beaches obtained veloc- 
ities corresponding to Froude numbers as large as 0.7-1.2; i.e., current velocities 
equal to or higher than the propagation speed of the waves. Wave current refrac- 
tion is caused by the gradient in current velocity so one would expect a strong 
change in the wave pattern and hence on the current itself from this mechanism. 

Dalrymple (1980) used a perturbation expansion to examine the simplified 
case of no turbulent mixing. The present model includes both turbulent mixing 
and the additional effect of the undertow. Based on Kirby & Chen (1989), this 
cross-shore current is represented by the mean value of the velocity below trough 
level. 

Fig. 4a shows the changes in wave incident angle for a case with slope 1:30, 
deep water incident angle a0 — 15°. Four cases are shown: No current refraction, 
longshore current only, undertow only, and the full 3D case with both longshore 
and cross-shore flow.   It is seen that the effects of the cross and the longshore 
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Figure 4: Effect of current refraction 

currents counteract and almost cancel each other. Also, the effect of each of the 
two factors isolated is actually very modest. This is also clear from the resulting 
longshore current profiles shown in Fig. 4b. The effect of the current refraction is 
only just discernible at the peak of the velocity distribution even if the undertow 
is neglected. 

Steeper slopes and larger angles of incidence will increase the effect and so will 
a 3D circulation pattern that locally creates a significant shoreward flow, bven 
then, however, our computations suggest that wave current refraction is not a 
very important mechanism for changing the current velocities. 

Velocity profiles 

Another feature of the present model is its capability of supplying the fully 3- 
dimensional velocity profiles from the 2-D horizontal, depth integrated solutions 
to equations (32)-(35). . 

The generic form of the velocity profiles was shown by b & L. As is apparent 
from the model, however, to obtaiu the profiles pertaining to each location it is 
necessary first to calculate the wave height and setup variation described by (32) 
and (33). In many previous nearshore models this part is eliminated by simply 
assuming that the wave height is a constant fraction 7 of the waver depth. 

Fig. 5 shows a set of consecutive 3D current profiles in the surf zone for 
a situation with slope hox = 1/30, and angle of incidence at the breakpoint of 
ah = 5°. To obtain equal detailing, each profile has been scaled relative to the 
local depth under wave trough and the local wave celerity. We see that_ in the 
region where the longshore current is largest the bottom velocity is predominantly 
longshore, but in other regions the cross-shore motion is more prevailing. 

If the angle of incidence increases, the longshore current velocity increases 
similarly and hence prevails more. Similarly, on a steeper slope, the cross-shore 
motion becomes stronger. 
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Figure 5: Variation of the velocity profiles across the surf-zone 

Eddy viscosity 

The eddy viscosity, utz, in the surf-zone has been determined previously by 
fitting computed undertow profiles to measured data. Values reported range from 
0.007h\/gh through O.Q3h\/gh (Svendsen and Hansen 1988) to a linear variation 
between zero and 0.3hxh\/gh (Okayasu et al. 1988), the later yielding Q.Q\h\/gE 
for hx = 1/30. 

In contrast, the eddy viscosity, utx used by, e.g., Longuet-Higgins (1970) for 
longshore currents is equivalent to O.Qlh\/gJi/hx, which on 1/30 yields O.Sh^fgK 
or about 30 times the value that can be justified for the undertow even inside the 
surf-zone. The large absolute value of vtx = 0.3hi,\/ghl at the breaker point is 
required to apply everywhere outside that point, and our comparison with Visser's 
(1982) measurements for regular waves confirm that such a large eddy viscosity 
is necessary to make the computations match with the measurements. Figure 6 
shows that the difference obtained in the longshore current distribution using i/tx 

equal to the vtz value found from undertow and vtx given by the Longuet-Higgins 
value mentioned above is very substantial. 

On the other hand, if we combine the hypothesis described by (1) for the 
nature of the mechanism behind vt with the fact that outside the surf-zone the 
turbulence is rather weak, it becomes inconcievable that this mixing mechanism 
can be due to turbulence. In this context, it is interesting that Thornton and Guza 
(1986) find that the effect of the eddy viscosity in their NSTS data from Santa 
Barbara is negligible in comparison to the variability of the waves even during 
periods of narrow banded, almost unidirectional incident waves. In other words, 
a physically realistic eddy viscosity would still give correct results. However, this 
does not explain which mechanism causes a similar mixing in the regular wave 
experiments. It is beyond the space available to discuss possible explanations to 
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Figure 6: Effect of eddy viscosity 

this paradox. What we seem to be able to conclude at this moment is that a very 
strong mixing process is controlling the longshore current distribution outside the 
breaker point both in regular and irregular waves. 
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