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Abstract 
A two layer undertow model is developed which consists of surface and inner layer. 

The surface layer defines breaking wave dynamics and the inner layer defines the mean 
fiow(circulation) and turbulence fields. The interface between two layers is determined 
by time and depth averaging of the mean water level and wave height in the surf 
zone (interface model), in which Reynolds stresses are taken into consideration as well 
as radiation stresses. The system of equations in the inner layer is derived by time 
averaging the mass and momentum equations over one wave period. Time and space 
averaging of these equations in the surface layer defines the surface boundary conditions 
of the mean flow field in the inner layer. Turbulence in the inner layer is discribed by 
the standard k — e model. 

The numerical calculation method is also discussed and model calibration is per- 
formed by comparing with the experiments by Stive and Wind (1985). 

1. Introduction 
The vertical circulation occuring in the surf zone consists of both the shoreward 

mass transport due to breaking wave and the offshore-directed bottom current 
(undertow). Combining the 2-D vertical and horizontal models, it may be possible 
to construct a 3-D model of the nearshore circulation system. 

Svendsen (1984)[6] developed a theoretical model using the first order approx- 
imation technique in describing breaking waves. Hansen and Svendsen (1984) [2] 
considered the effect of the bottom boundary layer in the undertow. This model 
was examined by using Stive and Wind's experimental data (1985)[4]. It was 
shown that the undertow is suppressed by the shear stress at the trough level, 
the static pressure induced by set-up, and the constraint of zero net flow. 

Madsen and Svendsen (1979) [3] developed a theory of vertically integrated 
conservation equations for breaking waves in the surf zone by introducing the 
concept of time and depth averaging of mass, momentum and energy between 
the bottom and mean water level (M.W.L.). From their treatment an idea came 

'Instructor, Disaster Prevention Research Institute (DPRI), Kyoto University, Gokasho, Uji, 
Kyoto 611, Japan 

2Professor, DPRI, Kyoto University, Gokasho, Uji, Kyoto 611, Japan 
3Lecturer, Faculty of Mathematics and Natural Sciences, Hasanuddin University,  Ujung 

Pandang, Indonesia 

150 



NEARSHORE CIRCULATION MODEL 151 

to mind to define the total depth by the surface and inner layers, thus allowing a 
theoretical treatment of the breaking waves in the surface layer. 

In this study, a simplified two layer model is proposed, in which the surface layer 
is introduced to describe breaking wave dynamics and to obtain the time-averaged 
boundary conditions for dynamics in the inner layer. The interface between these 
two layers is set by M.W.L. The breaking wavesgenerate turbulence and the tur- 
bulent kinetic energy conservation is considered in the model for the inner layer. 
Therefore, the boundary conditions for the k — e equations in the inner layer 
are defined by modelling the dynamics of surface layer. Mass, momentum, and 
energy conservation laws are formulated by employing Madsen and Svendsen's 
model. The motion in the inner layer is decomposed into time-averaged mean flow 
and turbulence. The governing equations of mean flow motion are expressed in 
terms of the vorticity and stream function, which are derived from the mass and 
momentum conservation equations. The standard k — e model is employed as the 
governing equation for turbulent motion. The coordinate transformation (con- 
formal mapping) method developed by Wanstrath, Whitaker and Reid (1976)[7] 
, is used to numerically calculate the 2-D vertical circulation pattern in arbitrary 
depth. Calibration of the numerical model is performed by a comparison with 
the experimental data of Stive and Wind (1985) [4]. 

2. Model Outline and Basic Equations 
Using the coordinates and variables shown in Pig.l, the governing equations 

are derived. The inner layer is defined as the region extending from the bottom 
to the mean water level (wave set-up) £. While the surface layer extends from 
the trough of the breaking wave to its crest. 

Breaking point 
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Fig.l      Schematic explanation of the model and coordinate system 

The velocities w; are decomposed into three modes, i.e. the mean flow w,, waves 
uwi and fluctuations u[.  Other quantities, a^, p, S;J are also decomposed in the 
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same manner, as: 

Mi = Ui + Uw, + u'{, '!J> 

Pij        Pij   '   Pwij + Pijt        Sjj' — sij + swij + Sy \*-) 

The characteristic time-scales of the three components are assumed to be quite 
different, therefore no correlation between them is considered. Applying these 
operations to the mass and momentum equations, the basic equations for the 
mean flow are obtained. When the Boussinesq's eddy-viscosity assumption is 
used to describe the Reynolds stresses u'^ by means of velocity gradients, the 
closure problem becomes a matter of how to determine the eddy viscosity ut, 
which is defined by: 

,  , i du,      duA      2lr „ k2 1 —.  , ,n. 

(a) Inner layer: mean-flow equations 
By differentiating x and z momentum equations and eliminating the pressure 

term p, we get 

d2   , ^(d2        9 
„   „ -(uu + uwuw + u'u') +    —-T - ——    (uw + uwww + u'w1) 
dxdz \dz2      ox2) 

du     dw\ 
-g^(ww + wwww + wW) = uV   yTz-^) (3) 

When small amplitude wave theory is assumed the momentum fluxes of the total 
wave component, umuw, uwww and wwwm, become zero in Eq.(3). 

The stream function ip and vorticity 0 are now denned as 

dip dip „     du     dw .,. 
- = «,      Tx=-W     and     a=Tg-- (4) 

In terms of the stream function and vorticity defined above, the basic equations 
are rewritten as: 

V2ip = Q (5) 

dz ) \dx J      \dx ) \oz j     dxdz \     dxdz J 

(b) Inner layer: standard k — e model 
The ^-equation is rewritten in the x — z plane as: 

_dk_      -M_d_(/vL       \9k\     !L{(YL     U)—\     Prod-£       (7) 
dx        dz      dx\\crh       Jdx)      dz \\ak       J dz) 
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where 
^    , I    fdu\       „fdw\        (du     dw\   | . . Prod=*{2UJ +2UJ +(fe+fej)       (8) 

The g-equation is also rewritten as 

8s 

dx dz      dx\\t7s       I dx J    dz\\as       1 dz)    k £)     (9) 

(c) Interface model 
The boundary conditions for the governing equations in the inner layer are dis- 

cussed here. The surface boundary is the mean water level ( which is an unknown 
value in the two layer system. Previous investigations of surf zone wave height 
and set-up show fairly good predictability of both quantities. Therefore, Svend- 
sen's (1984) [6] model is employed to determine the wave set-up £ and breaking 
wave height variation. Svendsen also presented the mass, momentum, and en- 
ergy dissipation due to breaking waves in his model by employing the first order 
approximation of motion, the effect of the surface roller and the wave shape pa- 
rameter B0. Consequently, Svendsen's model is needed to determine the wave 
energy dissipation (production in the k equation), mass flux and shear stress 
acting on the interface (surface) boundary. 

On the other hand, the boundary condition for the stream function ip, the vor- 
ticity Q, the turbulent kinetic energy k, and it's dissipation e must be determined. 
For this problem, Madsen and Svendsen's (1979)[3] formulation of the mass and 
momentum conservation equations are employed. 

The momentum equation in the x-direction is integrated over depth and then 
averaged over the wave period Tw as 

• £h puudz + ^{S1 + Sw) = -Pg(h + C)^ (10) 

where S' is the depth-integrated Reynolds stress and Sw the radiation stress 
defined by respectively 

^/vNM'h <"' 
Sw-       puwuwdz + I   p0dz - -pgCwCv, (12) 

where p0 is the dynamic pressure given by 

Vo = pg{z - C) + P (13) 

In Eq.(10), the inertia term, and the depth-integrated Reynolds stress term are 
added to the usual momentum balance equation. The latter term described by 
Eq.(ll) is the interaction term between a mean flow distribution and fc-equation 
in the inner layer. 
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The energy equation is given by 

dx 
= A, (14) 

where B„ is the mean wave energy flux and Dt the wave energy dissipation. The 
non-dimensional wave energy flux B and energy dissipation D are introduced 
respectively, as: 

(15) B = and     D = D* 
pgCH* • ~ ~"PgCH* 

where C is the propagation speed of the breaker. In the surf zone, C is approx- 

imated by C ~ \lg{h + ()• Using Eqs.(14) and (15), the equation for the wave 
height variation is finally botained as 

Hr I \       SCrBrTw JxT h + £ 
(16) 

where the subscript r refers to some chosen reference points, and Ks is the shoal- 
ing coefficient. 

Solving Eqs.(lO) and (16) simultaneously, the wave set-up and breaker wave 
height variation are obtained. However, in these equations, three parameters 
must be estimated, B, Sw and D. Svendsen (1984) [5] evaluated these parameters 
assuming that (i) the mean velocity in the roller is equal to the propagation speed 
C, (ii) the cross sectional area A of the roller is equal to 0.9H2, and (iii) wave 
energy dissipation is analogous to that of hydraulic jump, these are respectively 
given as: 

Swcpg(^Bo + 0.9^±^jHi (17) 

B = B0 + 0.45-J^ (18) 

[   + Hh + Cj [       h + (\H ')}j (19) D 

where L is the wave length, (c :the crest elevation and B0: wave shape parameter 
defined by 

5.= -/T"f- 
Tw Jo     \J 

dt (20) 

(d) Surface layer model 
The boundary conditions for the stream function ip and the vorticity Q equa- 

tions are considered here. To determine the boundary conditions at the surface 
C of the inner layer, the equations of mass and momentum are derived in the 
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surface layer. The kinematic boundary condition at z — C, is derived from the 
conservation of mass in the surface layer as 

The dynamic boundary condition at z = £ is derived from the conservation of 
momentum in the surface layer. The pressure at z = ( is obtained by integrating 
the vertical momentum equation between ( and ( and time-averaging over the 
wave period Tw, as 

f = -'(CMC) + u'(CMC)|     ...otH -w'CCMO + «'(CMC)^ - <0^/ udz (22) 

where the viscous term is neglected.   The time-averaged horizontal momentum 
conservation in the surface layer is derived from the following definition. 

rC t( r( 

H 

The horizontal momentum equation is given by 

/   momentumdz =  /    momentumdz — /    momentumd;? (23) 

(24) 
Substituting the pressure Eq.(22) into Eq.(24), the right-hand side of the equation 
becomes: 

RHS = {W'(C>'(0 ~ u'(Ou'(0) g + |n(C) + w(()^\ ^ 

ar2 

- "'(CMC) (^) + «'(CMC) (26) 

vhere 

Ms= f udz (27) 

When the orders of u(() and d(/dx are 0(1) and 0(5), the orders of the 
following terms can be estimated by the kinematic boundary condition, Eq.(21). 

w@~0{6),     ^r~0(6) (28) 

In the surface layer, strong shear flow is generated by the mass transport shore- 
ward due to the breaker. Then the following order estimation may be reasonable. 

du 
"'(CMC) ~ J-z ~ O(l) (29) 
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This order estimation leads to the brief expression of Eq.(26), as 

RHS = u'(Qw'(0 + 0(8) (30) 

On the other hand, LHS of Eq.(24) can be estimated as follows. The local pressure 
is given by integrating the vertical momentum equation between z and ( as 

:9(C-z)+faJ uwdz-pw2(z) (31) 
p{z) _ nl/.    ^ ,   9 

9 

Assuming that u2 is decomposed as 

u2(z) = u2(z) + u2
w(z) + u'2(z) (32) 

then, substituting these equations into the left-hand side of Eq.(24) yields 

^ = £{i(c-o2
+(c-olc^-J( 

< 
wwdz 

+(C-0(«2(C) + ^(0 + «'2(C)jj (33) 

It is then assumed that in the surface layer, the large scale turbulence exists 
whose velocity and surface fluctuation have dominant frequency in the spectral 
domain. If this dominant frequency is a harmonics of the wave, and other spectral 
components are negligiblly small, the turbulence components can be treated in 
the same manner as wave components. However, this assumption may be too 
bold to apply at this time since turbulence is usually characterized by multi- 
phase motion. However, eddies generated by breaking waves seem to have the 
same dominant frequency which is strongly related to the wave motion. If the 
above assumption is allowed, the brief expression of Eq.(33) can be obtained, as 

LHS = ~ jl^+CC7)} (34) 

Finally the dynamic boundary condition at the surface of the inner layer is 

A0w(0 = £{9-((X+CC)} (35) 
In the equation, the first term on the right-hand side is approximated by Eq.(20) 
and, for the second term, the following assumption is made. 

CC^g)2 (36) 

Furthermore, the shear stress due to turbulence is described by 

T"S tfKMO = -f - -*Tz (37) 
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Consequently, the dynamic surface boundary condition, which is expressed by 
breaking wave quantities, is given as 

Vt 
du 

Yz * = < dx I 2 
H2B0 + 

L2 
(38) 

3. Numerical Model 
a. Coordinate transformation 

In the numerical model the conformal mapping method (Wanstrath, Whitaker 
and Reid (1976)[7]) is employed to make the model applicable over a wider range 
of surf zone topography. The governing equations derived in the Z-plane are 
transformed to the C-plane( Fig.2). The arbitrary surface and bottom bound- 
aries in Z-plane are transformed into straightline [rj = ±/3) in the ("-plane. 
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(a) Z-plain 
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Af 

:  ( 

(b) ("-plane 

Fig.2     Z and (""-plane in the coordinate transformation 

c(£, 77) — f + ^(6nsinhn&c'? + cn cosh nkcrj) sin nkc^ 

z(£, rj) = 60 + V + ^2 fin cosn nkcr] + cn sinh nkcrj) cos nk£. 

(39) 

(40) 
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The Fourier coefficients bn(n = 0,1,2,...,N), and cn(n = 1, 2, 3,..., N) are de- 
termined by matching the surface and bottom boundaries at r\ = ±/?, using the 
least square error. The transformation function J2 is: 

d(x,z)      j dx\        Idz\   _    2 

«<.<,)-&) + («)•"• (41) 

Using these definitions, the relations of partial differentiations of function <f> with 
respect to (x,z) and (£, rj) are 

d<f> 1   Idz d<f>     dxd(f>\        dtp       dtp . 

dtp _      1   /   dzdtp     dxdtp\ _   dcf>       dtp 

where 

Finally, operators of the first order partial differentiation are given by 

9 9      L
5

       n 
9 d      x.9       n fA~ 

dx-=a8~r%^D*' d-z=ad~v
+bd-rD-       (45> 

The second order partial differentiations are 

Dxx( ) = aDa(a, ) + bDm{b, ) - aDiv{b, ) - bDvi{a, ) (46) 

D„( ) = aDnv(a, ) + bDu(b, ) + aDvi{b, ) + bDir,{a, ) (47) 

Dxz{ ) = D„{ ) = aDa{b, ) - bDvv(a, ) + aD(n(a, ) - bDni(b, ) (48) 

where 
/A      

9 f   d\        n   .     ,      d (   d\ 
Du{a,) = -[a-y     Dirt{a,) = -[a-y 

Q       / O   \ A       / £1   \ 

^(a'} = ^ (aaej •   ^•(a' } = ^ (%) • (49) 

The governing equations derived in the Z-plane are transformed to the £*-plane 
by applying the above mentioned operators. The stream function and vorticity 
equations are rewritten as: 

VL)^ = J2V (50) 

D^) 1 
/ dQ -£) nll.( dQ     ,dQ\ -DxW(a- + b-j + F-(n,vt) = ffiu)si (51) 

here 

F'(il, i/t) = -4Dxz4>Dxzvt + {Dzz(vt) - Dxx{vt)}{Q - 2DXX{4>)}       (52) 
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Similarly, the k and s-equations are transformed to the £*-plane as, respectively: 

,dk 

d-q 

- {% © 
(54) 

where 
Prod = vt \2Dx{uf + 2Z>,(«))2 + {£>,(«) + ^(w)}2] (55) 

b. Numerical scheme 

Numerical solution to an advection and diffusion (A/D) equation such as the 
vorticity equation, suffers from the numerical (artificial) diffusion as well as wig- 
gles. The Dennis-Chang method is known as one of methods which can reduce 
these numerical problems in the A/D equation with the second order accuracy. 
An iteration form is discretized by this scheme and calculated till the solution con- 
verges. Using the operator notations, A( ) and D( ), for advection and diffusion 
terms, finite difference equation are represented as: 

AUD(Sln+1) - D(Q) = AUD(Qn) - ACD(Qn) (56) 

where Aun( ) and ACD{ ) are the upwind and centered difference operators, 
respectively, which given by: 

V+ I V I V"— I V I 
+ HiA^"(fi,'J ~ fi,'"'-l) + ~mT{n"+1 ~ a'j) (5?) 

AoD{n) = ^{im'+1>> ~ ^n)'-^-> + ^b«•^+1 ~ (y°)^-i>     (58) 
and for the diffusion term : 

1 

Ax2 
D(Q) = T-siivMi+iJ ~ 2(^).,3 + M)i-ij} 

+ X^i(^k3+i - 2(utQ)iJ+1 + (^)h3~i} (59) 

where the advection velocity U and V are written as: 

U = aDz(4>) - bDx{4>),     V = -{aDx(rl>) + bDz{^)} (60) 
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For stable calculation, the dumping coefficient a„ is used at each iteration as 

Qn+1 = a»£T (61) 

In the cases of Dirichlet boundary problem, Woods boundary condition is appli- 
cable as 

fto = ~Hi - T^(Qi - Qo) + 0(Ax3) (62) 
2 Aar 

where the suffix 0 indicates the value at the boundary, and 1 indicates the value 
just inside the boundary. 
c. Interface boundary conditions 

At the surface, both the kinematic and dynamic boundary conditions for mean 
flow variables, ip and 0, are determined by the approximate expressions of the 
momentum and mass conservation equations in the surface layer. 

The kinematic boundary condition in the i?-plane determines the stream func- 
tion in the transformed coordinates. One possible example can be given as follows. 

The velocity components u*, w* in the £*-plane can be transformed to 

dx. 8C dMs        ,      dx. 
 (W5 — Ms 1 = ,     W    = —(ws 
or) ox or) ok, 

_ d(.      dMs 
U'7T> = ^F~ ox at, 

(63) 

In these equations — Ms is the stream function in the transformed coordinates 
system, which gives the surface boundary condition for the ^-equation. 

The boundary condition for the vorticity equation is 

n* = du* 

dr) 

dw* 

PVt 

d2M 

d? 

The boundary condition for the ^-equation at the surface can be given by 

*|. 

(64) 

(65) 

where rs is shear stress at the surface. The boundary condition for s is 

s = 7,Prod|s (66) 

I'here 

Prod|s 
gH3D 

4VT,,, 
+ vt<2 

du     dw\' 

dz      dx) 
(67) 

where js is the coefficient to be determined by turbulence properties. 
For both side boudary condtions, a third order polynomial stream function may 

be assumed and for the bottom boundary conditions, usual boundary conditions 
can be employed. 
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4. Model tests and conclusions 
In order to verify the applicability of the model, test calculations was performed 

in the inner layer, using the following assumptions; uniform distribution of Vt, 
third order polynomial of stream function distribution at both side-boundaries, 
and the slip condition on the bottom. 

Fig.3 shows the changes in the relative values of wave celerity C/CB, wave 
heights H/HB and mean water level (/hs with the relative water depth h/hs to 
compare with the experiments by Hansen and Svendsen (1979) [1]. Their exper- 
imental conditions are; the beach slope s = 1/40, wave period T = 1.79s, deep 
water steepness H0/L0 = 0.032. The figure shows that the calculations of break- 
ing waves and mean water level are in reasonable agreement with the experiments. 
Furthermore, the test calculation of undertow velocity profile corresponding to 
Hansen and Svendsen's experimental condition is shown in Fig.4. 

HANSEN   1CASE-H) 

1.0 

Fig.3     Changes in the calculated wave celerity G/CB, height H/HB and mean 
water level (/hs in comparison with Hansen and Svendsen's experiments [1]. 

The vertical velocity distribution of undertow in the inner layer region is com- 
pared with experiments by Stive and Wind (1985) [4] in the relative water depth 
range of h/hB = 0.88.0.765,0.647 and 0.53. Comparisons between the calcu- 
lated velocity vectors and the experiments are shown in Fig.5, where solid circles 
indicate the experimental data of Stive and Wind. The vertical circulation pat- 
tern calculated by the 2-D vertical circulation model under their experimental 
condition is shown in Fig.6. 

Because of an insufficient quantity of experimental data verification is not pos- 
sible, however, the theoretical curves agree resonably well with experimens. From 
the comparison between Stive and Wind's laboratory experiment of undertow and 
our test calculations, where a uniform distribution of eddy viscosity vt is assumed, 
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it could be concluded that the undertow velocity field in the inner surf zone can be 
calculated by the 2-DV model developed in this study. For the cases of arbitrary 
bathymetry, this model is more applicable than the previous 1-DV model. 

A 

Fig .4     Test calculation of undertow velocity profile 

hAt » 0.83 0.765 0.647 
Z/h 

0.53 

u/Sghi 

Fig.5     The vertical distributions of undertow velocity vectors and horizontal 
velocity profiles (solid curves) by Stive and Wind's experiment [4], at the points 

of h/hB = 0.88, 0.765,0.647, 0.53. 

Difficulties, however, still exist in improving the side boundary conditions which 
are in consistency with both mean and turbulent flow fields including bottom and 
surface boundary conditions. In other words, further extension of the proposed 2- 
DV model is required to clarify the treatment of the bottom boundary conditions 
which can satisfy the no-slip condition of mean flow and wall boundary condition 
of the k — e equations. It is emphasized that development of the 2-DV undertow 
model, which includs turbulent properties, contributes to the progress of surf zone 
investigations, such as sand transport mechanism, numerical calculation of the 
equiliburium beach profile, 3-D nearshore circulation model. 



NEARSHORE CIRCULATION MODEL 163 

Fig.6     The vertical circulation field calculated by the model under the 
experimental condition of Stive and Wind [4], 
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