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UNDERTOW IN THE SURF ZONE 
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Abstract 

A model is presented to describe accurately the energy transfer under 
breaking waves. In the model, the energy of organized large vortexes as well as 
those of wave-induced motion and turbulence is taken into account. The model 
allows to estimate the dissipation rate and distribution of energy, and then the 
cross-shore two-dimensional distribution of an undertow. The applicability of 
the model is confirmed by laboratory experiments. 

1. Introduction 

In order to predict the sediment transport and the material diffusion in the 
surf zone, it is necessary to estimate the distribution of an undertow. Since the 
undertow distribution has been evaluated from local properties of waves and 
turbulence in most of previous models, additional models are needed to evaluate 
the local properties from incident wave conditions. These undertow models 
have another disadvantage that they are applicable only to wave breaking in 
the inner region of the surf zone. Hence, to complete an undertow model which 
is valid through the whole surf zone, it is necessary to combine it with an 
accurate description of wave attenuation, energy distributions or generation 
of turbulence based on the actual breaking mechanism. However, energy of 
the organized vortexes which were pointed out to be formed around crests of 
breaking waves was not taken into account in the previous models for wave 
deformation in the surf zone. 

The first objective of the present study is to describe accurately the en- 
ergy transfer process in the surf zone by taking the energy of the organized 
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large vortexes into account. The second objective is to formulate a model to 
estimate cross-shore vertically two-dimensional distribution of the undertow 
on arbitrary beach topographies from the energy distributions obtained by the 
energy transfer model. 

2. Energy Transfer Model 

2.1 Energy balance in the surf zone 

In order to describe the transfer of energy by wave breaking, a model 
is presented in which the organized large vortexes are taken into account as 
a transmitter of energy in the energy transfer process from wave motion to 
turbulence. The total energy in the surf zone is described as 

Et = Ew + Ev (1) 

where E% is the total energy of wave per unit area, Ew the energy of wave 
motion and E„ the energy of organized large vortexes. 

The energy of the organized vortexes converted from wave energy is trans- 
ferred to smaller size eddies, and then dissipates. It is assumed that the con- 
verted energy from wave motion to the large vortexes never transferred back to 
the wave motion and the energy which dissipates directly from the wave mo- 
tion to heat by wave breaking is negligible. By using the energy flux by wave 
motion Ewcg and energy dissipation rate by bottom and wall friction Di+W, 
the transfer rate TB from the wave energy to the energy of the vortexes per 
unit length and unit width is expressed as 

TB = - *£?& - Db+W (2) 
ax 

where x is the horizontal coordinate in the shoreward direction and cg is the 
group velocity of waves. It is considered that -D(,+m directly dissipates without 
conversion through the large vortexes and is not negligible for wave propagation 
in wave flumes. 

The organized large vortexes propagate with the wave crests. Since the 
phase velocity c is nearly equals to the group velocity cg in the surf zone, the 
energy flux by the large vortexes can be approximated by Evcg, which satisfies 
the following equation: 

iijr1= TB'DB (3) 

where DB is the dissipation rate per unit area through turbulence by wave 
breaking. Since the energy once transferred from wave motion to the organized 
vortexes is kept by the vortexes for a while, difference appears in the spatial 
distributions between the attenuation of wave energy Ew and the generation 
of turbulence energy. 
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2.2 Mass and momentum fluxes by breaking waves 

The mass transport by breaking waves consists of those by the wave motion 
Mw and by the organized vortexes Mv [Okayasu ti al. (1988)]. By using the 
linear long wave theory, the mass flux by the wave motion Mw is described as 

M.=,f(^F=^ (4) 
where h is the mean water depth, ( the water surface elevation and Ep the 
potential energy of waves. 

If the length and velocity scales of the organized vortexes can be repre- 
sented by the wave height H and the wave celerity c, respectively, the mass 
flux by organized vortexes Mv satisfies 

Mv ex ^ (5) 
c 

The total mass flux due to breaking waves can be described in terms of the 
potential energy and the energy of organized large vortexes as 

gh c 
Mt = 1.6—Ep + -Ev (6) 

in which the coefficients were determined so as to fit the measured values. 

As for the radiation stress, the total radiation stress St can also be divided 
into two parts which are the excess momentum flux by wave motion Sw and 
that by the organized large vortexes Sv. The small amplitude wave theory is 
adopted for convenience to calculate Sw in this study. The radiation stress by 
the organized large vortexes Sv is evaluated as 

Sv=
5-Ev (7) 

3. Estimation of Energy Distribution 

In the present model, the one dimensional time-dependent mild slope equa- 
tion is adopted to calculate the distribution of the energy of wave motion Ew. 
The energy of organized large vortexes Ev supplied from Ew at a certain point 
is assumed to be transferred to the turbulence energy within some distance 
determined in terms of the local water depth. The energy dissipation rate DB 

is obtained by integrating the transferred energy. 

3.1 Estimation of energy of wave motion 

The time-dependent mild slope equation was originally derived by using 
the small amplitude wave theory. However, waves in the surf zone can no more 
be regarded as small amplitude waves. In that sense, the time-dependent mild 
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slope equation may not be appropriate for waves in the surf zone, but it is also 
a fact that there is no wave theory which can express the waves in the surf zone 
adequately. It has been reported that the wave energy calculated by the time- 
dependent mild slope equation fits well with the measured wave energy [see 
e.g. Watanabe and Dibajnia (1988)]. Hence, in this study, the time-dependent 
mild slope equation is adopted as the governing equations to estimate the wave 
energy variation in the surf zone. 

The following time-dependent mild slope equation with the dissipation 
term is used after Watanabe and Dibajnia (1988): 

in which t is the time, Q the flow rate, n = cg/c. The attenuation factor f& by 
wave breaking is the sum of fa and /j+u,, where fa is the energy transfer factor 
from wave motion to large vortexes and fb+w the energy dissipation factor due 
to energy loss by bottom and wall friction, fa is expressed as 

/r = «rtan^f(^j (10) 

which was given by Watanabe and Dibajnia. In Eq. (10), or is a parameter 
which linearly increases from 0 to 2.5 around the breaking point, then takes a 
constant value 2.5 in the inner region. The bottom slope tan ft is the average 
value of the bottom slope near the breaking point, g the acceleration of gravity, 
7 the ratio of water particle velocity to wave celerity. The symbols ~/s and yr 

are 7 on constant slope and for wave recovery zone, respectively. The energy 
dissipation factor fh+w is obtained from the laminar solution by Iwagaki and 
Tsuchiya (1966) as 

fb+w = 1^(1 + —i—) (11) 
n \B      smh Ikh) 

where v is the kinematic viscosity, a angular frequency of wave, k the wave 
number, B the width of wave flume. In the surf zone, the bottom and wall 
boundary layers may not be laminar flow, but the dissipation by wave breaking 
is so large that the damping due to the bottom and wall friction is negligible. 

The breaking point xb is determined as the point where the wave height 
takes its maximum value. Isobe (1987) approximated it by the following for- 
mula: 

76 =0.53 - 0.3exp(-3\fhb/Lo) 

+ 5(tan/?)3/2exP{-45(VVio-0.1) } (12) 



ENERGY TRANSFER MODELING 127 

where io is the deep-water wavelength and subscript b denotes the quantity at 
the breaking point. 

The breaking points slightly differ depending on its definition. Since the 
energy transfer from the wave motion to the organized large vortexes and also 
the energy dissipation should occur from the point where the wave crests begin 
to break, the coefficient CUT in Eq. (10) is set to be 0 at the crest breaking point 
x'h and to be the maximum value 2.5 at the transition point xt. Considering 
the results by Seyama and Kimura (1988), the crest breaking point is given as 

x'b = xb - 2/lf, (13) 

in this model. 

According to the small amplitude wave theory, the value of the potential 
energy Ep is equal to that of the kinetic energy Ek- However, Ek is larger than 
Ep for non-linear waves in general. Dibajnia ei al. (1988) obtained the result 
that the maximum ratio of Ek to Ep calculated by the finite amplitude wave 
theory is up to 1.2 as far as the calculation converged. Since the breaking waves 
in the surf zone can be considered as non-linear, the ratio Rp = Epj'Ek is made 
to change linearly from 1 at x[ to its minimum value at the wave plunging 
point xp in this model. Ep is reduced to about 90% of Ew/2 in the inner region 
of the surf zone. 

The values ~/s and -yr in Eq. (10) have been determined so that the poten- 
tial energy agreed well with the measured value. They should be reduced in 
proportion to the decrease of Ep, because the variation of Rp accelerates the 
decrease of Ep apparently. Hence, in this study, they are determined as 

7S = 0.35 (0.57+ 5.3tan/?) (14) 

7r = 0.45(^ (15) 

where a is the wave amplitude. 

The time-dependent mild slope equation can deal with wave reflection, 
however, a rapid change of the energy transfer factor JA generates considerable 
numerical reflection in the offshore side of the breaking point. Since the energy 
dissipation by wave breaking occurs with little wave reflection, it is necessary 
to keep it small for the accurate description of the wave field. It is possible to 
decrease the energy of the reflected waves by changing the wave number in the 
onshore region according to the value of ff. The modified wave number k' is 
given as 

k'-ndrW)k (16) 

v^+7 l + r^ 
ak = m^    b* = 1 (1?) 2x/2 

'<ry i + \A 2VW1-M/1 + f2 
i-r 
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If fx = 0, k' is equal to k which is calculated by the small amplitude wave 
theory. In the surf zone, k! is smaller than k in general. The smaller wave 
number results larger wave celerity. Horikawa and Isobe (1980) found that the 
wave celerity in the surf zone can be predicted fairly well by the solitary wave 
theory. It means that the modification agree with the reality. However, k/k' is 
kept to be less than 1.2 to prevent the wave celerity from increasing too much 
due to the extremely large value of fx close to the shoreline. 

The offshore and shoreline boundary conditions, the method of numerical 
computation and the adopted mesh scheme are the same as those employed by 
Watanabe and Dibajnia (1989). The solution is assumed to be converged when 
the absolute errors between the values obtained from two successive cycles of 
the calculation at every point are less than a tolerance error throughout the 
field. In the present study, the required absolute error is equal to 1% of the 
incident wave height for both the wave amplitudes and the setup calculation. 

3.2 Estimation of energy dissipation rate 

In order to evaluate the dissipation rate Dg, the vortex energy supplied 
from wave energy by wave breaking is assumed to be equally transferred to the 
turbulence energy in a distance I A given in terms of the local water depth h. 
The distance Id is determined as 

h = I      xt - < (18) 
( Ah (x > xt) 

where xt is the wave transition point which is the boundary between the outer 
and inner regions in the surf zone. By using Ij, DB is calculated as 

X 

DB(x) =   f    td(x;x')dx' (19) 
J-°° 

where 
0 (x < x') 

*'(*- *') = { TTTT    (*' ^ x < x' + W)) (2°) 'd{x') 

0 {x' + h(x') <x) 

3.3 Determination of transition and plunging points 

The determination of the transition and plunging points is necessary for 
evaluating the energy distribution in the present model. For that sake, the 
transition and plunging points were measured for various incident waves on 
different bottom slopes. 

Figure 1 shows the relation between the averaged value of lt/h0b and the 
bottom slope tan/2, where /(.is the distance from the breaking point to the 
transition point and hoi, the still water depth at the breaking point. The marks 
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Fig. 1     Relationships between bottom slope and 
transition and plunging distance. 

in the figure express the averages and the vertical lines express the fluctuations. 
The solid line expresses 

h 
5 tan/? 

+ 4 (21) 

by which the transition point can roughly be estimated. 

As for the plunging points, the averages are nearly constant and do not 
depend on the bottom slope. The distance lp from the breaking point to the 
plunging point is expressed roughly as 

lp = 2.5/iQj (22) 

4. Undertow Model 

4.1 Vertical variation of mean shear stress and eddy viscosity 

The Reynolds stress and the eddy viscosity coefficient are quantitatively 
evaluated from the energy dissipation rate by means of dimensional analysis in 
the model. By using dimensional analysis, Battjes (1975) obtained the repre- 
sentative velocity of turbulence q as 

P 

1/3 

(23) 
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The vertically averaged mean shear stress rm in the horizontal plane and the 
vertically averaged mean eddy viscosity vm are expressed as 

rm = CrP^DT (24) 

vm = C.p-^hD^3 (25) 

respectively. CT and C„ are constant and taken to be 0.02 and 0.03, respec- 
tively, in this model. 

The mean shear stress r and the eddy viscosity i/e are assumed to be linear 
functions of the vertical elevation z' from the bottom [Okayasu et al. (1988)] 
and are expressed as 

r = «r,' + 6r=°|l/,^r(^'-l) (26) 

ue = avz< = OMp-^D^-z' (27) 

where dt is water depth at wave troughs. 

4.2 Vertical variation of undertow 

Though the molecular viscosity v is far smaller than the eddy viscosity ve 

in the surf zone in general, it cannot be neglected near the bottom or in the 
offshore region. The total viscosity is therefore defined as follows: 

vt=ve + u (28) 

By using the eddy viscosity model, the relation between the mean shear stress 
r acting on the horizontal plane and the steady current U in ^-direction is 
expressed as 

T = PV*J; (29) 
Substituting Eqs. (26), (27) and (28) into Eq. (29), the steady current U can 
be expressed as 

U =  —z  H log(a„z + v) + C\ (30) 
a„ af, 

where C\ is an integral constant which is obtained in terms of the mass trans- 
port by waves Mt as 

lor a„bT — aTv 
o — rf( TT lav aid* 

Cl = - --Z-dt 
T

3     T    {avdt+v)\o%(a„dt+u) 

v\o^v-avdt - - Mt (31) 
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In order to obtain the same vertical distribution as what was proposed by 
Longuet-Higgins (1953) when Dg = 0, and to give a continuous solution in and 
out the surf zone, Eq. (30) is modified as 

U=^\Z<^%\ + ^L alu l avz' +p 1 + i0g 
a„ dt + v 

h*L±2L\-\Mt v       I       h 

aT = aT + 

avdt 

va2<rk       (  , ,   .  ,    ,,      3sinh2fcfe      9 
— 5     Uh smh 2kh + —— + - 
2h2 sinh2 kh V 2kh 2 

b'T = bT 

pa2crk 

4/isinh2 kh 

, ,   . ,    , ,      6 sinh 2kh 
2kh sinh 2kh + ——• + 9 

ArCtl 

(32) 

(33) 

The values of the second terms in Eq. (33) are far smaller than those of the 
first terms in the inner region of the surf zone. 

xl03(g/s2) 

t—-meas.P.P. 
cal.T.P. 

meas. T.P. 

-400 -200 0    (cm) 

Fig. 2     Calculated and measured energy variations (1/20 slope). 
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5. Results 

Figure 2 shows variations of the calculated values of the potential energy 
of wave motion Ep, the energy of the organized large vortexes Ev and the total 
energy of wave Et for wave breaking on 1/20 constant slope. Measured potential 
energy is also shown in the figure. The period and height of the incident waves 
are 2.00 s and 8.50 cm, respectively. The calculated and measured value of 
Ep agree well. Ev takes almost the same value as Ep at the transition point 
(indicated by T.P.). Ep does not attenuate so much up to the plunging point 
(P.P.). The calculated values of the energy transfer rate Tg and the energy 
dissipation rate DB are shown in Fig. 3. The hatched area corresponds to the 
rate of change of the vortex energy. The small value of DB near the plunging 
point is consistent with the reality. 

xl03(g/s3) 

cal.P.P.       cal.T.P. 
cal. B.P.I I 

-400 -200 0    (cm) 

Fig. 3     Rate of energy transfer and dissipation. 

meas. B.P. 
• calculated M.W.L. 

S.W.L. I    meas. P.P.  meas.T.P. 
- measured M.W.L.    * ^ 

0    (cm) 

Fig. 4      Calculated and measured undertow distributions (1/20 slope). 
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Figure 4 shows a comparison of the calculated and the measured distri- 
bution of an undertow together with the bottom profile. The variation of the 
mean water level is also given in the figure. The undertow profiles are well 
evaluated except near the plunging point. The discrepancy near the plunging 
point may be caused by the insufficient accuracy of the evaluation of the energy 
dissipation rate or the energy and mass flux by the organized large vortexes in 
the outer region. Discrepancy is also found in the variation of setup around 
the plunging point, but the accuracy is good near the shoreline. 

Figure 5 shows a result on a step-type beach. Period and height of the 
incident waves are 1.20 s and 9.24 cm in this case. The agreement between 
the calculated and measured values is good, although the calculated energy 
oscillates in the wave recovery zone. Comparisons of the distributions of un- 
dertow and variations of the mean water level are shown in Fig. 6. They agree 
well in the whole surf zone except around the plunging point, although the 
calculations were carried out only from the incident wave conditions. It can be 
concluded that the present model can compute the steady current distributions 
on various beach topographies with a good accuracy. 

5. Concluding Remarks 

In order to describe accurately the mechanism of the energy transfer during 
wave breaking, a model was presented in which the organized large vortexes 
were taken into account as a transmitter of energy in the energy transfer process 
from wave motion to turbulence. The mass and momentum fluxes by the 
organized large vortexes were also discussed. 

By using the models of the energy distribution and the mass transport, a 
model was presented for the two-dimensional distribution of the undertow. The 
Reynolds stress and the eddy viscosity coefficient were quantitatively evaluated 
from the energy dissipation rate on the basis of the dimensional analysis. The 
variation of the mean water level in the surf zone was also predicted with a 
good accuracy by considering the momentum flux by the organized vortexes. 
The model can evaluate the distribution of the undertow on an arbitrary beach 
topography from the incident wave condition. 
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meas. B.P. 

Fig. 5     Calculated and measured energy variations (step type). 
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Fig. 6     Calculated and measured undertow distributions (step type) 
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