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ABSTRACT 

A time-dependent three-dimensional numerical model of coastal and estuarine 
circulation, which allows the use of generalized curvilinear grids to resolve the 
complex shoreline geometry and bathymetry, has been developed. Model formu- 
lation is briefly presented, followed by example model applications to such water 
bodies as Lake Okeechobee, James River and Chesapeake Bay. 

INTRODUCTION 

Numerical models are routinely used for scientific investigations and manage- 
ment studies of circulation and transport processes in coastal and estuarine waters. 
However, a number of complexities are associated with the numerical modeling of 
coastal and estuarine circulation and transport. First of all, the geometry and 
bathymetry of water bodies are often quite complex (see, for example, Fig. 1). 
Secondly, circulation and transport in coastal and estuarine waters are generally 
turbulent and time-dependent, and often three-dimensional. Last but not least, 
circulation and transport are generally affected by wind, tide, wave, and often 
density stratification. A thorough discussion of these various aspects and a re- 
view of numerous existing hydrodynamic models were presented in Sheng (1986a). 
This paper focuses on the aspect of complex geometry and bathymetry, and high- 
lights the recent development and application of a curvilinear linear-grid numerical 
model of coastal and estuarine circulation and transport. 
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Figure 1.     Los Angeles and Long Beach Harbor. 
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Figure 2(a).  Generalized curvilinear (boundary-fitted) grid used 
in the horizontal directions of the 3-D model. 
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Figure 2(b).  Vertical stretching of the coordinates in the 3-D 
model. 
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Figure 3.  Transient response of water level near the closed end 
of an initially quiescent basin of 300 km x 29 km x 
10 m, subject to a tidal forcing with 1 m amplitude and 
12.5 hr period.  ( model results, +++ analytical 
results) 
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Traditional finite-difference models use uniform or non-uniform rectangular 
grid to approximate the complex geometry of water bodies. Consequently, very 
fine grid is often required to resolve a shoreline or an internal feature such as a 
structure or navigation channel. As a larger number of rectangular grid points 
are employed, the "stair-step" model shoreline can better represent the actual 
shoreline, at the expense of much increased computational cost. To alleviate some 
of these problems, simple curvilinear grids such as conformal grid (Warnstrath, 
1977) and orthogonal curvilinear grid (Bennett and Schwab, 1981) have been used 
for modeling water bodies where geometries are not so complex. Despite the 
relative simplicity of these curvilinear grid models, it is extremely difficult (if 
not impossible) to generate conformal or orthogonal curvilinear grids for most 
coastal and estuarine water bodies, such as the Los Angeles and Long Beach 
Harbors shown in Figure 1. Not only is the grid generation process extremely 
difficult, but the final grid may also be unnecessarily fine in some areas while 
very coarse in others. In addition, the final grid may not be very smooth. Thus, 
for coastal and estuarine applications, a hydrodynamic model that can resolve 
arbitrary shoreline and bathymetry must be developed. Numerical model must be 
able to accept not only conformal grids or orthogonal grids, but also generalized 
curvilinear grids which are often non-orthogonal. Such a numerical model will 
allow the modeler added flexibility in the design of numerical grids with optimal 
smoothness, resolution, and orthogonality. 

This paper presents a generalized curvilinear-grid model for coastal and estu- 
arine circulation and transport. The model resolves the contravariant components 
of horizontal velocity vectors, thus significantly simplifies the resulting equations 
of motion and boundary conditions in the transformed grid. In the limiting cases 
of conformal grids or orthogonal grids, the model equations become substantially 
simplified. 

MODEL FORMULATION 

Governing Equations in Curvilinear Grid 

The basic circulation and transport model is developed in terms of the con- 
travariant velocity components (u1 and u2) in the horizontal directions (x1 and 
x2) and the vertical velocity (w) in the vertical direction of a a-stretched (Sheng 
and Butler, 1982) curvilinear grid (Fig. 2). The basic equations of motion in 
dimensionless and tensor-invariant forms can be written as (Sheng, 1986b): 

ldHuk        -*!»-*,.««" (2) H at 
Ro (Wtt'),( 

dHuku 

da 
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where k = 1 and 2, (a:1, a;2) = (£,J?) represent the coordinates in the computational 
domain which is always consisted of uniformly spaced rectangular grid, djdxk is 
the partial derivative, gtn is the metric tensor while g0 is the determinant of the 
metric tensor, f is the free surface displacement, H = h + f is the total depth, uk 

is the contravariant velocity component, a = (z — f)/(f + h), ( )_< represents the 
covariant spatial derivative, !* represents the contravariant spatial derivative, and 
ek' is the permutation tensor, Ro = urjfXr is the Rossby number, Ev = Avo/ fH2 

is the vetical Ekman number, EH = AHojfl? is the lateral Ekman number, Frd = 
ur{gDAp0/p„)01, is the densimetric Froude number, /? = (Ro/Fr)2 = gD/f2L2, f 
is the Coriolis parameter, and (ur, D, L) represent the reference (velocity, depth, 
horizontal length). 

The above Eq. (2) can be expanded into 2 equations for u1 and u2. For exam- 
ple, denoting (u1,!* ) by (u,v), the following equation represents the momentum 
equation in the f direction (Sheng, 1986b): 

1 dHu 

H   dt °£ or})      y/g;       y/cfo (3) 

Ro 
If ^-(Huu) + -?-{Huv) + (2DJ, + D\2)Huu 

(3D\2 + Dl2)Huv + D\tHvv + 
dHuLo 

da 

E^d_ (     du 

H2da \   "da 

Ro 

Fr2 H 
i dp dp 

Ja  [9   dZ+°   drj 
da 

»i£--33 (/>•«) d£   "    dr) 

4-   En AH • (Horizontal Diffusion of u) 

where D'jk represents the Christoffel symbol of the second kind: 

D)* ginDnjh 

rSm(Sn;:Jb + 9nk:j ~ 9jkm) 

(4) 



2660 COASTAL ENGINEERING—1988 

The above equation appears to be more complicated than the momentum equa- 
tion in a Cartesian grid with (x, y, a) or (x, y, z) as coordinates. Most of the terms 
are doubled, while nonlinear and lateral diffusion terms are more than doubled. 
However, if an orthogonal grid is used, the following equation will result from Eq. 
(3): 

1 dHu 
H   dt 3Z       y/lh 

(5) 

Ro 
^(Huu) + ~{Huv) 

dHuw 
da 

E^_d_ (     du\ 
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H [*/>!—"f(/>—) 

As indicated before, such simplified equation cannot be used unless the shore- 
line geometry is so simple such an orthogonal grid can be generated. Even then, 
the numerically computed metric coefficients, which represent the geometric ef- 
fects in the transformed equations of motion, do not necessarily guarantee the 
satisfication of conservation laws in the discrete system. 

The transport equations for temperature, salinity, and sediment concentration 
are simpler and can be written as: 

1 dH<j> 
H   dt 

EV    d   (   d*\ 
PrvH

2da \   "da) 

Ro    fd^/%Hu4> 

~iQTo\    M    4 

EHKH ( uav 
PrH   V   d(? 

(6) 

+ 2<? 

dy/gZHutj) 
dr\ 

dy/g^Huj<t> 
da 

didr) + g' 

where <j> can be temperature (T), salinity (S), or suspended sediment concentra- 
tion (C), (Prv,Prn) represent the vertical and lateral turbulent Prandtl numbers, 
and {KV,KH) are the dimensionless vertical and horizontal turbulent diffusivities. 

Other Model Features 

The above system of equations are solved in conjunction with the proper 
boundary conditions at the free surface, the bottom, and the lateral boundaries. 
At the bottom, the velocity profile asymptotically approaches that of the law-of- 
the-wall, with a drag coefficient which depends on the bottom roughness. 
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Turbulence parameterization used in the present model is similar to the one 
described in Sheng (1987). While the horizontal turbulent eddy coefficients are 
prescribed as uniform values which decrease with the grid spacing, the vertical 
eddy coefficients are determined from simplified versions of a second-order closure 
model of turbulent transport (Sheng and Chiu, 1986; Sheng and Villaret, 1988). 

Numerical Algorithm 

To allow efficient solution of the 3-D model, the mode-splitting technique de- 
scribed in Sheng et. al. (1978) and Sheng and Butler (1982) is also used here. 
Vertically-integrated equations obtained by integrating Eqs. (1) and (2) repre- 
sent the so-called "external mode", while the internal mode consists of equations 
obtained by subtracting the vertically-averaged equations from the u and t; equa- 
tions. An ADI scheme, which is somewhat more complicated than that for the 
Cartesian equations, is used for the external mode of the present model. Either 
two-time-level or three-time-level scheme can be used for the time integration of 
the 3-D model. 

The numerical model described above constitutes the main body of a flow 
code, CH3D. In addition to CH3D, a grid generation code based on the elliptic 
grid generation technique (Thompson and Johnson, 1985) and a preprocessor code 
(Sheng, 1986) which computes the metric coefficients must also be used when 
solving practical problems. 

At the present time, we do not adjust the grid during a particular model sim- 
ulation. Adaptive grid technique, which allows the adjustment of grid resolution 
according to the evolution of dynamic flow, is being developed (Sheng and Luo, 
1988). 

Model Applications 

Numerous model simulations have been performed. Model applications to a 
number of idealized basins were presented in Sheng (1987). Additional model 
sensitivity tests have been performed. For example, Figure 3 shows the transient 
response of an initially quiescent rectangular basin (300 Km x 29 Km x 10 m) to 
a suddenly imposed tidal forcing with 1 m amplitude and 12.5 hr period. Since 
no diffusion or bottom friction was used in the model, the model results faithfully 
simulated the analytically computed transient response which consists of higher 
harmonics in addition to the forcing harmonic. 

Model application to the James River estuary (Fig. 4) produced mean tides 
which agreed well with data, both in terms of amplitude (Fig. 5) and phase shift 
(Fig. 6). Model application to the Chesapeake Bay (Fig. 7) produced results 
which compared well with mean tides. Significant spatial variation is found in the 
model computed velocity field, which is being compared with measured data now. 
The same basic model is being applied to the upper Chesapeake Bay (Johnson, 
1988). 
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Figure 4.  Near-surface current in the James River driven by a 
M2 tide of 38 cm amplitude at the open boundary. 
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Figure 5.  Mean M. tidal amplitude in the James River ( model 

results, +++ data).  Amplitude at open boundary = 38 cm. 
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Figure 6.  Mean M, tidal phase lag in the James River (  model 
results, +++ data). 
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Figure 7.  Near-surface current in the Chesapeake Bay driven by 
a M tide of 60 cm amplitude. 
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Model application to Lake Okeechobee showed that, despite the shallowness 
of the lake (average depth of 3m), significant return flow is produced near the 
bottom due to a 5 ms-1 wind from the east (Figs. 8 and 9). The vertically- 
averaged velocity field clearly showed the existence of 2 topographically induced 
circulation gyres. 

H9.H CM/SEC 

3D-VEL0CITY 

3D-ERST   WIND 

Figure 8.  Near-surface wind-driven currents in Lake Okeechobee due 
to a wind of 5 m/sec from the east. 

17.1     CM/SEC 
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Figure 9. Near-bottom wind-driven currents in Lake Okeechobee due 
to a wind of 5 m/sec from the east. 
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