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SIMULATION OF WAVE FORCES ON A HORIZONTAL CYLINDER 
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ABSTRACT 

The characteristics of wave forces acting on a 
horizontal circular cylinder were investigated through 
numerical calculations as well as experimental findings. 
The laboratory data on wave forces were analyzed by the 
concept of wave force path and classified into two types. 
One is the circular type and the other one is the 
8 - shaped type. In order to analyze the above phenomena, 
the discrete vortex method was applied with appropriate 
assumptions. The comparison between the numerically 
calculated results and laboratory data shows that the 
simulation model proposed in this paper seems to be 
favorable to predict the wave forces acting on a horizontal 
circular cylinder within a certain range of conditions. 

1.INTRODUCTION 

Prediction of wave forces acting on a circular cylinder 
has been investigated by number of researchers during the 
last thirty eight years since Morison et al. (1950) 
proposed their semi-empirical formula. The main interest 
of these researchers was to evaluate the hydrodynamic 
coefficients introduced in the stated formula (Koderayama 
et al., 1978). However, the formula cannot be applied to 
such a case that vorticies generated behind a circular 
cylinder are extremely unsymmetrical with respect to wave 
direction . 

In the present paper, an analytical and numerical 
treatment was attempted to calculate the flow 
characteristics around a horizontal circular cylinder 
induced by gravity waves or oscillatory flows and the fluid 
forces acting on the body  by  using  the  discrete  vortex 
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method which was originally presented by Rosenhead (1931). 
The above treatment was carried out under such a restricted 
condition that the effects of free surface as well as of 
the bottom on fluid motion can be neglected. That is to 
say, it is assumed that the submerged cylinder is located 
in a certain range of water depth apart from the limited 
layers of both free surface and sea bed. The calculated 
results were compared with the experimental data reported 
by Sarpkaya (1975) in order to investigate the adaptability 
of the stated prediction method. 

2. CHARACTERISTICS OF WAVE FORCES ACTING ON  A  HORIZONTAL 
CIRCULAR CYLINDER 

2.1 Previous Studies 

It is well known that the Morison formula is commonly 
applied to evaluate the wave forces acting on a cylinder, 
particularly on a circular cylinder. However, in the case 
of a submerged circular cylinder set horizontally at a 
certain water depth, the direction of wave force acting on 
the cylinder varies with time, the situation of which is 
different from that of a vertical cylinder. Hence the 
Morison formula was extended by Borgman (1958) to the 
vectorial form, under the assumption that the direction of 
drag force is the same to that of fluid velocity. 

However the above assumption is not necessary to be 
true. Therefore Sawamoto et al. (1979) investigated the 
fluid force induced by oscillatory flows, and Tsuzuki et 
al. (1984) and Masuda et al. (1985) did by wave by 
introducing a phase difference. According to the result of 
flow visualization conducted at the University of Tokyo, it 
is realized that the Morison type formula can not be 
applied to the case in which the motion of vortices 
separated from the body surface is complicative. 

As a theoretical approach, Sarpkaya (1968) applied the 
Blasius formula for unsteady flow to calculate the fluid 
force on a circular cylinder under uniformly oscillating 
flows. Detailed observations made by Sawamoto and Kikuchi 
(1979) in an oscillatory flume indicated that the pattern 
of vortex formation can be classified by using the 
Keulegan-Carpenter number as shown in Figure 1. The^ 
Keulegan-Carpenter number is defined by K.C.=UT/2R, where U 
is the amplitude of oscillatory flow velocity, T the period 
of oscillatory flow, and R the radius of the circular 
cylinder. From this diagram we can realize that the 
unsymmetrical vortices appear under the condition of K.C. 
> 8, causing nearly regular time variation of lift force. 

2.2 Experimental Findings 

In order to look at the above phenomena in an 
oscillatory flume more clearly, let us take the wave force 
path defined by the diagram illustrated in Figure 2. Here 
two kinds of typical laboratory data were picked up and 
drawn in Figure 3 for demonstration. The upper diagram 
indicates that the wave fore path for K.C. = A.24  forms  a 
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nearly circular curve, while the  lower  diagram  indicates 
that the path for K.C. = 8.75  forms an 8 - shaped curve. 

The situation of vortex formation in a wave field might 
be somewhat different from that in a uniformly oscillating 
flow. The laboratory data collected in a wave flume at the 
University of Tokyo were plotted as shown in Figure 4. The 
abscissa of this diagram is the K.C. number and the 
ordlnate is the amplitude ratio between the vertical and 
horizontal fluid particle velocity amplitudes, f and tj. 
The open marks are for the circular type wave force path, 
which is called C type, and the filled marks for the wave 
force path with the 8 - shaped curve, which is E type. The 
upper part of the ordinate in this diagram corresponds to 
the deeper water wave condition, while the lower part 
corresponds to the shallower water wave condition. A 
demarcation curve between these two types of wave force 
path can not be clearly drawn. However, it can be said 
that E type appears under the shallower water and larger 
K.C.  number conditions. 
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3.  SIMUMATION  OF  WAVE  FORCES  ACTING  ON  A  HORIZONTAL 
CIRCULAR CYLINDER 

3.1 Treatment for Simulation 

(1) Discrete vortex method 

The aim of this paper is to analyze the stated 
phenomena under appropriate conditions and assumptions. In 
the present treatment the discrete vortex method is 
applied. The following analysis is based on the potential 
flow theory in which the discrete vortices emitted from the 
horizontal circular cylinder surface are introduced. At 
first the Milne-Thomson circular theorem (Milne-Thomson, 
1968) is used to determine the complex potential of the 
interested flow, however the free surface and bottom 
boundary make the analytical treatment extremely complex, 
According to Ogilvie (1963) and Chaplin (1981) it is 
concluded that the free surface effect on the boundary 
condition can be neglected when the ratio between the 
submerged water depth and the circular cylinder diameter is 
large enough, say 5. While Nath and Yamamoto (1974), and 
Uekita and Yamazaki (1980) investigated the effect of 
bottom boundary on the complex potential of the stated 
phenomena, and concluded that the bottom boundary effect 
can be neglected when the clearance between the lower 
portion of the cylinder and the bottom is larger than the 
circular cylinder diameter. Taking into account the above 
two results we will select an appropriate range of 
submergence of the circular cylinder in order to proceed 
the analysis in neglecting the surface and bottom boundary 
effects . 

Now let us assume that the questioned complex potential, 
W, is the summation of those of potential flow  surrounding 
a circular cylinder and of distrete vortices,  W_  and  Wv. 
That is to say , 

W=WP+Wv (1) 

(2) Determination of W„ 

The term Wp can be expressed in the  next  equation  by 
using the Milne-Thomson circular theorem, 

WP=;Wptl(z) + WAR*lz) (2) 

where Wp0'
z) is the complex potential for the flow field 

where the circular cylinder does not exist, and z=x+iy. In 
order to express the term explicitely, we are able to apply 
an appropriate wave theory such as the small amplitude wave 
theory, the finite amplitude wave theory, and the stream 
function theory. In case of the small amplitude wave 
theory 

where OJ is the angular frequency, k the wave number, H  the 



2206 COASTAL ENGINEERING—1988 

wave height, h the water depth, s0 the distance of the 
circular cylinder center from the bed, and t the time. 
While in case of the stream function theory (Dean, 1965) 

Wp0= — At>z + 2 An sin {knz+iknSt>—a>nt—pn) ( 4 ) 
n 

where An, (3n are coefficient and phase lag appeared in the 
stream function theory, kn = nk, and 6n = n6. 

(3) Determination of  Wv 

The term Wv induced by discrete vortices can be 
expressed in the next equation by using again the 
Milne-Thomson circular theorem, 

Wv= -~ E A log (z~zk) +~Z Alog (z-#/2*) (5 ) 

where I\ and z^ are the circulation and the complex  posi- 
tion of each discrete vortex. 

(4) Emission of a vortex and the vortex motion 

In order to clarify the emission of a vortex from the 
circular cylinder surface, the location and the circulation 
of a vortex just before separating from the circular 
cylinder must be evaluated. From such a view point, the 
separation point is neccesary to be determined by any 
appropriate way. As a first step, we calculated the 
velocity distribution within a laminar boundary layer 
developed along the surface of a circular cylinder. 
However, it is quite natural that the above treatment can 
not be applied to the case with large K.C. numbers and 
large Reynods numbers. In order to determine the separation 
point in the above case, we decided to adopt the fllowing 
two conditions. The first one is that the shear stress on 
the cylinder surface, Tj,, is zero at the separation point, 
the condition of which is commonly applied to the steady 
boundary layer flow. The second one is that the arcwide 
pressure gradient on the surface is zero at the separation 
point. The latter condition is adopted by the following 
reasons ; that is, (1) the flow separation may appear in 
the vicinity of the point on the surface where the pressure 
reaches its maximum, and (2) the stated position can be 
easily determined by using the potential flow velocity 
outside the boundary layer. 

In order to check which condition is more suitable for 
our purpose, we applied the above two to the uniformly 
oscillating flow and compared the evaluted time dependent 
separation point with the laboratory data obtained by Grass 
and Kemp (1979) as shown in Figure 5. The abscissa 
indicates the phase of flow and the ordinate indicates the 
location of flow separation point on the cylinder surface. 
Either of these two conditions is not adequate to predict 
precisely the location of flow separation, however the 
condition for pressure gradient is better than that for 
shear stress. Therefore we selected the condition of 
pressure gradient to determine the flow separation point in 
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(5) Wave forces acting on a circular cylinder 

The wave force components can be obtained 
Blasius formula for an unsteady flow by using the 
velocity potential.  That is 

by  the 
the  complex 
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*-»Htf„(S)Vfri I" Wdz (10) 

where C is an arbitrary closed curve surrounding the 
questioned cylinder section. Introducing Equations (1), 
(2) and (5) into Equation (10), we get the next equation, 

dz 

-iP s rk(uk-ivk)-P z «-|r(/'»R'/2*) 
k k      01 

d*WP0, +v2/v 3z* 
'-(zk-IP/Sk) 

(6)   Decay   of   vortex   circulation 

(11) 

In the treatment of the discrete vortex method, it is 
assumed that the circulation of emitted vortex maintains 
its original value. However the above assumption can not 
treate the actual phenomena due to the decay of vortices 
by the fluid viscosity. Considering the above fact, we 
will introduce the decay of vortex in the following way to 
simulate the flow characteristecs surrounding the 
horizontal circular cylinder. That is to say, we assume 
that the discrete vortex is represented by a Rankine vortex 
with a core, the radius of which, rv, can be expressed by 

rv = 2.24 Virf* (12) 

where t is the elapsed time since the vortex emitted 
from the cylinder surface and v is the kinematic viscosity 
of fluid. The term rv corresponds to the core radius of 
Stokes vortex. In addition to the above, we also assume 
that the elapsed time, t~"~, has its upper value Tc, which 
represents a kind of decay time. Hence the limited core 
radius , is given by 

r„-=2.24 -/vFc (13) 

(7) Calculation procedures 

The flow chart of the numerical calculation is shown in 
Figure 6. That is to say, emit a discrete vortex at each 
time step, then calculate the velocity field, wave force 
acting on a cylinder and the translation of the above 
vortex. Repeat the above calculation proceses until the 
time history of wave forces reaches its cyclic pattern. 
When two discrete vortices come in touch each other, let 
unite them to a single vortex in such a way to conserve the 
total angular momentum. When the vortex comes inside of 
the circular cylinder, return the vortex to the position 
where the vortex core comes in touch with the cylinder 
surface, and then let the vortex be convected by the 
induced flow velocity at the next time step. 

3.2 Numerical Results and Verification 
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(3) Wave force path 

In order to investigate the effect of vortex decay, the 
calculated wave force pathes based on the stream function 
theory were compared with the laboratory data of Masuda et 
al. (1985) as shown in Figure 7. The solid lines are the 
experimental results, while the dotted lines are the 
calculated  ones.   The  calculated  curves  in  the  upper 
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Table 1 Conditions for a uniformly oscillating flow, 

(a) Calculation conditions 

Case R 
(cm) 

1 
(cm) 

T 
(s) 

U 
cm/s 

K.C. T/A t 

S-l 
S-2 
S-3 

2.5 
2.5 
2.5 

20.0 
20.0 
20.0 

1.0 
1.4 
1.9 

20.5 
22.9 
21 .8 

4.1 
6.4 
8.3 

60 
80 

120 

R : circular cylinder diameter,  1 : cylinder length, 
T : oscillatory flow period,  U : horizontal velocity 
amplitude,  K.C. : Keulegan-Carpenter number, 
ht : time step. 

(b) Calculation runs for each case 

Run   Flow pattern       Decay of vortex 

1 Without 
2 a) Symmetrical     With  ( Tc = T ) 
3 With  ( Tc = T/2 ) 

4 With  ( Tc = T ) 
5 b) Unsymmetrical   With  ( Tc = T/2 ) 

Table 2  Conditions for progressive waves. 

(a) Calculation conditions 

Case     R      1      h      Yo      T      H      T/At 
(cm)   (cm)   (cm)    (cm)    (s)   (cm) 

W-l 2.5 
W-2 2.5 
W-3     2.5 

h : water depth,    Yo : cylinder center depth, 
H : wave height,    others : same as in Table 1. 

(b) Calculation runs for each case 

20.0 50.0 10.0 1.0 9.4 60 
20.0 50.0 13.0 1.4 11.0 80 
20.0 50.0 10.0 1.9 9.9 120 

Run Decay of vortex 

1 Without 
2 With ( Tc = T ) 
3 With ( Tc = T/2 ) 

Note : Small amplitude wave theory and  stream  function 

theory were applied for calculations. 
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diagrams of Figures 7 (a) and (b) were obtained  under  the 
3se i 
T/2. 

Looking at these diagrams, we can observe the following 
facts : 1) in the deeper water wave condition, the wave 
force path (C type) was simulated well under either 
conditions of Tc = T or Tc = T/2, and 2) however in the 
shallower water wave condition, the 8-shaped type wave 
force path (E type) was reproduced well under the condition 
of Tc = T/2, but not under the condition of Tc = T. In 
order to make clear the reason why such a difference as 
stated in 2) happened, the calculated flow induced by the 
vortices in the vicinity of a circular cylinder for Case 
W-»3 were displayed. From these diagrams, we could observe 
that the unsymmetrical vortex behavior was reproduced at 
the time step of t/T = 3.6~3.8 for Tc = T/2, but not for Tc 
= T. Therefore we can conclude that appropriate decay of 
vortex should be introduced to simulate the interested flow 
characteristics. 

(3)  Drag  coefficient,  inertia  coefficient,   and   lift 
coefficient 

By using the calculated time histories of horizontal 
wave force component in a uniformly oscillating flow, the 
dag coefficient, Cp, and the inertia coefficient, C^j, were 
calculated through the following equations 

D  * J* fR. 0 X 

The obtained data for the symmetrical flow cases were 
plotted and compared with the laboratory data of Sarpkaya 
(1975) as shown in Figure 8. The abscissa in these 
diagrams is the K.C. number. The agreement for C^ is 
fairly good, however the calculated values of Cp were 
underestimated. The main reason why the latter discrepancy 
appeared is in the condition applied for determing the 
separation point. In this treatment the potential flow 
velocity surrounding the circular cylinder with the effect 
of vorticies was used. That is to say, at the point where 
the velocity is zero flow separation does not occur at any 
time and this fact caused rapid migration of separation 
point. Due to the above circumstance the development of 
vortex is disturbed, hence the drag coefficient results in 
decrease . 

On the other hand two kinds of lift coefficient were 
calculated by using the following equations, 

CuriAx) •= Fs. /fOyRjL (16) 

CuM»=M'ftVRJL (17) 
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The former and latter data for symmetrical flow cases were 
compared with the laboratory data of Sarpkaya (1975), and 
that of Maull and Milliner (1978) as shown in Figures 9 
(a) and (b) respectively. The abscissa of the diagrams is 
again the K.C. number. The tendency of scattered data 
agrees with the laboratory curve in both cases. 

In the same way, these three coefficients for 
unsymmetrical flow cases were invertigated. The unsymmetry 
of flow did not induce any strong influence on the 
coefficients of Cp and C^, but induced a certain amount of 
influence on the coefficient of C^ 

4. CONCLUSIONS 

In the present paper was presented the numerical 
calculation method for predicting the wave forces acting on 
a horizontal circular cylinder set in a certain range of 
water depth. The simulation model is based on the discrete 
vortex method. The adaptability of the present calculation 
method was checked by comparing the calculated results with 
available laboratory data. As a conclusion of the present 
treatment, we found that the method presented here is 
applicable by introducing approprate decay of vortex 
circulation even to the cases where the emitted vortices 
induce strong unsymmetrical fluid motion. 

Further study is needed to present a reasonable method 
to evaluate the vortex decay in the above treatment and to 
extend the capacity of the present simulation method for 
calculating the interested wave forces under more realistie 
or practical conditions. 
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