
CHAPTER 150 

STATISTICAL ANALYSIS OF DETACHED BREAKWATERS IN JAPAN 

Takaaki UDA 

ABSTRACT 

Construction of detached breakwaters is one of the main 
countermeasures against beach erosion in Japan. The number 
of breakwaters has been rapidly increasing, with about 2500 
constructed as of the end of 1981. This study aims at the 
investigation of the effect and stability of detached break- 
waters along Japan's coasts on the basis of survey of 1552 
breakwaters constructed by the Ministry of Construction. The 
existing conditions of the dimensions of the detached break- 
waters are statistically analyzed; the optimal dimensions 
for sand deposition behind a breakwater are proposed, and 
the critical conditions for advance of the shoreline facing 
an opening of breakwaters are investigated. Furthermore, the 
relations between the scattering rate of concrete blocks and 
various conditions such as bottom slope, the depth at the 
breakwater, the offshore distance of the breakwater and the 
weight of the blocks are studied. It is concluded that, in 
order to prevent scattering, the weight of the blocks should 
be at least 1.5 times heavier than that calculated from the 
Hudson formula. 

I. INTRODUCTION 

The coastal zone has been highly utilized in Japan 
because of the shortage of plains in the Japanese archi- 
pelago. Every effort has been made to protect the coastline 
from erosion due to sea waves. In 1950's, full-scale coastal 
protective measures were initiated in Japan. In this period, 
coastal dikes were mainly constructed to prevent coastal 
disasters brought by storm surges. In the late 1950's, 
coastal dikes and revetments of the vertical wall type were 
introduced against beach erosion. Thereafter, groins were 
constructed, but there were several cases with less effect. 
In the 1960's, the field test of detached breakwaters was 
conducted for the first time to confirm their effectiveness. 
Since then, detached breakwaters have been constructed 
extensively to preserve or revive the sandy foreshore, as 
the damage to coastal dikes and revetments, triggered 
indirectly by the disappearance of the foreshore, increased. 
At present, construction of detached breakwaters is one of 
the main countermeasures against beach erosion, and many of 
them have been constructed along Japan's coasts to dissipate 
wave energy and prevent beach erosion. The number of 
detached breakwaters has been rapidly increasing with about 
2500 constructed as of 1981. However, there are still many 
problems to be solved for construction of detached break- 
waters.  The planning method  to  ensure  the  effect  and 
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stability of detached breakwaters has not yet been 
established. This study, based upon survey of 1552 
breakwaters built by the Ministry of Construction, aims at 
the investigation of the effect and stability of detached 
breakwaters(Seiji et al., 1987). 

II. METHOD OF INVESTIGATION 

The survey was conducted in order to study the existing 
situations of detached breakwaters in Japan. Questionnaires 
were distributed to the prefectural government offices and 
to the work offices of the Ministry of Construction to 
collect the information on each of the 1552 detached 
breakwaters constructed by the Ministry or by the prefec- 
tural governments as subsidiary works of the Ministry by the 
end of 1982. 

The contents of the questionnaire are summarized in 
Tabl e  1 ,  in which the principal items are general mat ters, 
natural c sondi t i ons , dimensions of the breakwater, kind: s of 

concrete blocks, in: formation on the scattering of the bli ocks 
and the effect of the breakwater.  Although the de tai Is of 
the items  are  summarized in Table  1  ,  there are i some 
addi tional  notes ti a be given.  A serial number was at ta' ched 
to identify each breakwater.  The  difference between 
permeabl i e and impen Tieable types was of interest, bu t al 1 the 
breakwaters were of the permeable type.  The water depth at 
the bre, akwater and 

Table 1 

the offshore distance to the  b 

Contents of the questionnaire. 

reakw. ater 

Classification Items 

General Matters name of the prefecture 

name of the coast 

number of the detached breakwater 

construction date 

Design Conditions design wave height 
design wave period 
tidal range 
bottom slope at the site 
water depth (reference: H.W.L.) 
offshore distance (reference: H.W.L.) 

Dimensions of the Detached 
Breakwater 

type (permeable or impermeable) 
placing (pellmell or uniform) 
crown height 
length 
elevation above the H.W.L. 
foundation 

Kinds of Concrete Blocks kind 
weight 
KB value in the Hudson formula 

Effect and Stability subsidence of the blocks 
scattering of concrete blocks 
method of placing 
tombolo formation (yes or no) 
foundation (yes or no) 
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were measured above the H.W.L., whereas the crown height of 
the breakwater was measured above the standard mean sea 
level of Tokyo Bay. 

In orde 
detached bre 
classified in 
Fig.l, based 
features of t 
Type A: The 
the Aomori C 
low on these 
the open sea 
smal1. 
Type B: The 
topography, 
and the Ensh 
enough for sa 
incident wave 
Type C: The 
region is r 
trough topog 
Suruga Coast. 

r to study the effect and stability of the 
akwaters in general, the type of coasts was 
to five categories of A through E, as shown in 

on the beach profile. The characteristic 
hese coasts are as follows: 
coasts facing a bay or an inland sea,  such  as 
oast and the Toban Coast.  The wave heights are 
coasts compared with those on the coasts facing 

and the critical depth for sand movement  is 

coast with a fairly developed bar-trough 
such as the Niigata Coast, the Ishikawa Coast 
u Coast. The bottom slope in a region shallow 
nd movement is mild, and the direction of mean 
s is almost normal to the coastline. 

coast where the bottom slope in the shallow 
elatively steep without the formation of bar- 
raphy,  e.g.,  the Shimoniikawa Coast  and  the 
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Fuji Coast 
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Fig.l Type of the coasts classified into five 
categories of A through E. 
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Type D: The coast with an extremely steep slope of 1/3-1/10, 
e.g., the Fuji Coast in Suruga Bay. 
Type E: The coast similar to Type C, but with a bar-trough 
topography sometimes observed in a far offshore zone, e.g., 
the Kochi Coast. 

III. RESULTS OF SURVEY 

3.1 Situations of detached breakwaters in Japan 

The  results of the survey about the dimensions of  the 
detached breakwaters  are  shown  in Figs.2  (a)  to  (h). 
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Fig.2 Frequency distribution of various dimensions 
of the detached breakwaters; (a) length, (b) 
water depth, (c) elevation above the M.S.L., 
(d) offshore distance, (e) crown height, (f) 
actual weight of block, (g) type of coasts 
and (h) bottom slope. 
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The sand deposition effect of the detached breakwaters 
was investigated statistically on the basis of tombolo 
formation. Figure 3 shows the percentage of tombolo forma- 
tion. It is clearly seen that tombolos were formed in about 
60% of all the cases. The frequency distribution of the 
maximum shoreline advance due to tombolo formation is shown 
in Fig.4. The shoreline advance ranges from 0 to 140m. The 
maximum frequency is found in the interval of 10-20m, and 
the cases with a shoreline advance of more than 100m is 
quite limited in number. 
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Table 2 shows the percentage of the number of the 
subsided detached breakwater corresponding to the kinds of 
the bed materials. The ratio of the number of the subsided 
breakwater relative to the total number accounts for 64% 
(sand), 43% (gravels) and 10% (rock), respectively. The 
reason of the subsidence of the breakwater for the rocky 
bottom materials may be due to the fact that the 
interlocking of  the concrete blocks near the  top  of  the 

Table 2 Percentage of the number of the subsided 
detached breakwater corresponding to kinds 
of the bed materials. 

^^Sub s idence 
Bottom^^^ 
materials^^^ 

Exist Nil Unknown Total 

rock 
(10%) 

19 
(73%) 
141 

(17%) 
34 

(100%) 
194 

gravel (43%). 
139 

(56%) 
183 

( 1%) 
5 

(100%) 
327 

sand 
(64%) 
678 

(33%) 
347 

(  3%) 
42 

(100%) 
1067 

silt 
(100%) 

1 
(  0%) 

0 
(  0%) 

0 
(100%) 

1 

Total 
(53%) 
837 

(42%) 
671 

(  5%) 
81 

(100%) 
1589 
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breakwater may be loosened by wave action. Comparing both 
foundations of sand and gravels, the ratio of the subsidence 
in the latter case is small. However, the ratio of the 
subsidence of the blocks is large enough in both cases, and 
it is necessary to take effective measures against 
subsidence if detached breakwater is constructed on the 
foundation of sand or gravels. 

Percentage of the number of detached breakwater with or 
without scattering of blocks is shown in Fig.7 . Scattering 
of the blocks can be observed in 14% of the total. In 
addition, frequency distribution of the scattered distance 
of blocks is shown in Fig.8 in the case whose scattered 
distance is available. Scattered distance ranges between 0 
and 13m, and the most frequent case of scattering distance 
is 4-5m . 
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^"3 Scattered distance(m) 

Fig.7 Percentage of the number Fig.8 Frequency distri- 
of detached breakwater      bution of the scat- 
with or without scatter-      tered distance of 
ing of blocks. the blocks. 

3.2 Effect of detached breakwaters 

The effects of detached breakwaters are mainly divided 
into two categories: the first is to cause the sand 
deposition behind the breakwater, and the second is to 
dissipate the incident wave. The former effect basically 
depends not only on the dimensions of the breakwater but on 
the rate of sand supply due to littoral drift. It is, 
however, difficult to study the influence of the littoral 
drift in general, because the conditions of sand supply 
differ to a large extent from place to place. Therefore, 
only the influence of the dimensions on sand deposition is 
discussed  in  this study. 
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since  it  seemed to be most  significant  in the 
of stability and sand deposition under high wave 

Finally,  the breaking depth was evaluat ed on 
tion that the ratio of the breaker height and the 
th at the breaking point is 0.78. 

Fig.10 Relations among r„ , h'lfa and l/Y. (The solid 
and open circles in (a) express the condi- 
tions of i=100m and 2=150m, respectively. The 
'x' sign shows the other cases. The solid 
circles and triangles in (b) express the 
cases of the beach materials composed of 
sand and gravels, respectively.) 
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Figure 10 shows the relations among Ta , h'lfo and IjY 
on the coasts of type B (e.g., the Ishikawa Coast and the 
Niigata Coast) and type C (e.g., the Shimoniikawa Coast and 
the Suruga Coast), with additional classifications on the 
length of breakwaters and the kind of the beach materials. 
The solid and broken lines in the figure show the upper and 
lower limits of the data. The coasts of these two types were 
selected as typical coasts in Japan. Although the data were 
limited to the case of h'lhb<l for the coasts of type B, Ta 
increase  with h'jht, under  these   conditions.  The  sand 
deposition effect due to the detached breakwaters improves 
with larger h'lhb , and the relative scale of tombolo is 
larger when the location of the breakwater is closer to the 
breaking point. It was found that Ta takes the maximum value 
at IIY&1.6 ; that is, the relative area of the tombolo is 
maximized when 1&1.6Y. 

In the case of type C, the data are scattered compared 
with the data for type B. The value of Ta tends to decrease 
if h'jht<l, which means that the relative area of tombolo 
decreases as the distance from the breaking point to the 
breakwater increases. As for the relation between Ta and 
IjY , Ta appears to be maximum at IjY&I.O, and thereafter it 
remains constant in contrast with the decrease in the case 
of type B. 

As described above, a tombolo is formed due to the sand 
deposition effect of detached breakwaters, if various 
conditions are satisfied. The formation of a tombolo behind 
the breakwater is normally considered to be a favorable 
effect. On the contrary, the retreat of the shoreline 
facing openings can be caused by the construction of the 
detached breakwaters. This sometimes causes serious 
problems such as wave overtopping over the revetment behind 
a detached breakwater and/or the scouring at the foot of the 
revetment, when the original foreshore is narrow. Figure 11 
shows the relations between the change in the shoreline 
facing the openings and the dimensions of detached 
breakwaters on the basis of the field data. Three 
dimensionless parameters I'll , V\Y and IjY were selected to 
indicate the breakwater dimensions, where /' , I and Y are 
the opening width, the breakwater length and the offshore 
distance, as illustrated in Fig.9 . For the detached 
breakwaters built on the Japan's coasts, the ratios of the 
opening width to the length concentrate to certain values, 
so that the data are plotted separately for different I'll 
values. In Figs.11 (a) to (c), the effect of each parameter 
is shown without regard to the other parameters. Let us 
cosider the case of I'lla 0.3 for example. In Figs.11 (b) and 
(c), I'jY and UY are respectively taken in abscissa. 
Between these variable, the following relations hold: 

l'IY=llY-l'll*0.3llY (1) 

Consequently,  Figs.11 (b) and (c) give the similar  result. 
In  the case of  Z'//«0.3,  shoreline facing the openings  of 
detached breakwaters always advance regardless of l\Y.     The 
tendency changes as l\Y   approaches to 2;  that is,  if  the 
offshore distance of the breakwater approaches to one half 



DETACHED BREAKWATERS ANALYSIS 2037 

of the breakwater length. 

Fig.11 Relations between the change in the shoreline 
facing the openings and the nondimensional 
parameters indicating breakwater dimensions. 

In the case of l'll=t0.5, the possibility of the retreat 
of the shoreline facing the opening becomes high in contrast 
with the case of l'll&0.3. The critical condition for the 
shoreline advance may also be given by yy«2.0. In other 
words, the shoreline retreats under the condition of 
breakwater length, if the offshore distance Y is less than 
0.5/. As described above, the shoreline facing the openings 
may retreat depending on the breakwater dimensions. This is 
due to the fact that the breakwater construction causes the 
increase in the wave height at a opening and, therefore, in 
the littoral drift from the opening toward the lee of the 
breakwater. 

The second function of the detached breakwater is to 
dissipate the incident waves. This function can be dis- 
cussed through the investigation of wave transmission 
coefficient. For the evaluation of the wave transmission 
coefficient KT , the following formula has been proposed 
(Numata, 1975). 

&=l/{l + 1.135(Bft/D)°-»"-(tfi/Ii)°-
5}! (2) 

where Bn, is the mean width of the breakwater at the still 
water level, D is the height of a concrete block, Hi is the 
incident wave height and Li is the incident wave length. 
Equation (2) holds only if the elevation of the crown of 
detached breakwater above the sea level is higher than the 
incident wave height. 

The validity of the formula is examined by using the 
field data obtained through field investigations conducted 
on three coasts: namely, the Shimoniikawa Coast, the Niigata 
Coast and the Enshu Coast. As shown in Fig.12, the average 
of the field data can be predicted fairly well by use of 
Eq.(2) if HtlLi>Q .02, whereas KT is underestimated if the 
wave steepness is smaller than 0.02. 



2038 COASTAL ENGINEERING—1988 

0.00 0.08      0.10 0.02        0.04       0.06 

Wave steepness (Hi/Li) 

Fig.12 Comparison of the measured and predicted wave 
transmission coefficients. 

3.3 Scattering of concrete blocks 

Figure 13 shows the scattering rate the ratio of 

type A is low compared with the others. This may be because 
the wave height is usually low in a bay and in an inland sea 
and consequently the wave forces acting on the concrete 
blocks and the changes in the beach topography caused by 
scouring around the blocks are small.   On the other hand, 
.nenoSCa"ering rate for the coast of type D is as high as 
52.9^. The scattering of concrete blocks on the coasts of 
i•LtyPo Was reP°rte<i in the preceding paper (Kohno et al . , 
1986). Several reasons can be raised for this. First, on 
the Fuji Coast, incident waves tend to act on the concrete 
blocks without large attenuation, since the bottom slope is 
steep  (1/3-1/10).   The second reason is that  strong wave 
actions  cause 
breakwaters. 
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Similarly, the scattering rate depending on offshore 
distance is plotted in Fig.16. The offshore distance less 
than 120m are divided into 20m intervals, while those 
greater than 120m are divided into 40m intervals. The 
scattering rate increases with the offshore distance up to 
100m, and then tends to decrease. High scattering rates 
were measured at offshore distance between 80 and 120m 
possibly because the locations of the detached breakwaters 
are close to the breaking points. 
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The scattering rate was also investigated in relation 
with the weight of the concrete blocks. For this purpose, 
the ratio of the actual weight of the block to the weight 
calculated from the Hudson formula is introduced, where the 
design wave height is assumed to be equal to the water depth 
multiplied by 0.78, namely, the breaking wave height. The 
distribution of the number of the breakwaters that  suffered 
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the scattering rate of the concrete blocks is 
relation with the kind of  block placing,  the 
erformance  and the subsidence of  the blocks, 
the preliminary investigation of the  relation 
scattering rate and the kind of  placing,  the 
uniform placings resulted in 19.5%  and  11.0% 

espectively.   In  studying the  scattering  of 
cks,  it is important to consider the  combined 
e kind of placing and foundation performance as 
g.18.   The  scattering rates in the  cases  of 

uniform placings are almost the  same  if  a 
ists.  Without foundations,  however, the seat- 
in the case of pellmell placing becomes  18%, 

ch  larger than 8.5% in  the  case of  uniform 
extent of scattering is greatly influenced by 

lock placing.   The influence of subsidence  on 
g of blocks is shown in Fig.19.  The scattering 
e breakwaters that subsided due  to  waves  is 

is nearly twice as large as the rate 9.4% for 
rs without subsidence. 



DETACHED BREAKWATERS ANALYSIS 2041 

1 500 r 

:s400 

I   300 

-S   200 

[ZZ1626 

100 

2 

85 

195 

, 25 , 
tmzk 

U 

331 

2JL 22222 

u 
(a) 

total 
scattered 

278 

, 50 , 

"* 20 

10 

co    o 

FOUNDATION NO FOUNDATION 
18.0 

13.6 12.8 

8.5 

u u 
00 

U:uniform placing 
P:pellmell placing 

Fig.18 Combined effects of the kind of 
placing and the foundation per- 
formance on the scattering rate. 

20 

ho 10 

CO  0 

Fig.19 

17.9 

9.4 

Exist  Nil 

The 
the 

scat tering 
subsidence 

rate depending on 
of concrete blocks. 

IV. CONCLUSIONS 
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dimensions of the detached breakwaters were 
y analyzed on the basis of the survey of 1552 

constructed by 1982. The main conclusions of 
are summarized as follows: 
e optimal of a detached breakwater was evaluated 
deposition behind the breakwater as well as the 
onditions for advance of the shoreline facing a 
openi ng. 
e wave transmission coefficient to be used for 
of the wave height distribution behind the 
can  well be estimated by the formula  given  by 

scattering of concrete blocks was found in 13.7% 
breakwaters surveyed. 
e ratio of the number of the breakwaters that 
cattering to the total number of the breakwaters 
oast  takes the maximum value, 

depth  at  the  breakwater, 
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weight calculated from the Hudson formula. The scattering 
rate reduces to 3.1% when concrete blocks heavier than 1.5 
times the calculated weight are used. 

6) The scattering rates of concrete blocks were 19.6% 
and 11.6% for the cases of pellmell and uniform placings. 
The scattering rate does not significantly depend on the 
kind of block placing, if a foundation is constructed. 
Otherwise, the scattering rate in the case of pellmell 
placing is more than twice as high as that in the case of 
the uniform placing. The extent of scattering is particular- 
ly influenced by the kinds of block placing in the case of 
detached breakwaters without foundation. 
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