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ABSTRACT 

Laboratory experiments using a fiber-optic LDV system 
and a small pressure transducer have been made to reveal 
detailed characteristics of the velocity field in the surf 
zone and its relationship to the sediment suspension with 
special reference to the three-dimensional large scale 
eddies referred to as "obliquely descending eddies", the 
existence of which was recently revealed by Nadaoka (1986). 
A conditional sampling technique has been used to find that 
the obliquely descending eddies bring highly intermittent 
intensive turbulence to the bottom with the large onshore- 
ward momentum at the upper layer of the water and thus es- 
sentially characterize the turbulent flow field in the surf 
zone. Visual observation and concentration measurements, 
especially a coherence analysis of two data sets of concen- 
tration close to the bottom, have shown that the sediment 
suspension is mostly governed by such large scale eddies in 
a wide extent of the surf zone; i.e., the eddies hit the 
bottom and then lift up the sediment into suspension, 
yielding the spot-like sediment cloud in accordance with the 
three-dimensional eddy structure. 

1. Introduction 

The effect of wave breaking is one of the most signifi- 
cant factors for the coastal sedimentary process. In this 
respect, Miller (1976), Shibayama and Horikawa (1985), and 
others have discussed sand suspension by the action of the 
large scale vortices generated immediately after the wave 
plunging (Fig. 1).    The generation of such vortices, which 
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Fig. 1  "Horizontal rollers" and sediment suspension. 
(Miller 1976, Shibayama & Horikawa 1986, etc.) 
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Fig.2  Schematic representation of the large scale eddy 
structure under breaking waves. (Nadaoka 1986) 
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flow structure changes quickly into that of obliquely down- 
ward stretched eddies with strong three-dimensionality which 
is referred to as "obliquely descending eddies" (Fig. 2) . 
Therefore, it is worth to pay our attention to these ob- 
liquely descending eddies, because they may act as possible 
agitator of the bottom sediment in the surf zone. 

The main purpose of the present study is to clarify the 
detailed characteristics of the turbulent velocity field in 
the surf zone and its relationship to the sediment suspen- 
sion with special reference to the "obliquely descending 
eddies" under the turbulent bore. 

2. Experimental Equipments and Procedure 

The wave channel used for the experiments was 0.6 m deep, 
0.4 m wide and 20 m long, equipped with a flap-type wave 
generator. The experiments were made both for a fixed bed 
and a movable bed. In the former case, a wooden slope of 1 
on 20 was installed at one end of the channel and in the 
latter ground coal of 0.21mm in median diameter and of 1.45 
in its specific weight was placed with the depth of 15cm on 
the slope, as shown in Fig. 3. The use of the ground coal 
for the bed material was to suppress the generation of the 
ripples under the wave action as much as possible, because 
in the natural surf zone condition the ripples is hardly 
developed . 

The experiment was carried out under the condition of 
wave period r=1.27s, equivalent offshore wave height #o=15.5 
cm, offshore wave steepness H {, /L$ =O . 061. Regular waves 
generated by the wave maker produced a spilling-type 
breaker, the depth and wave height of which, h and H were 
16.7 cm and 14.7 cm, respectively. It should be noted that, 
under the spilling breaker condition, there exists no 
horizontal roller. 

Horizontal and vertical velocity components, u and w, 
were measured with a two-component fiber-optic laser-Doppler 
velocimeter of back-scattered fringe mode (FLV, Hino et al., 
1984).   The water surface fluctuation n was measured with a 

absorber 

(unit:m) 
Fig . 3  Experimental equipment. 
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capacitance-type wave gauge at right above the velocity mea- 
suring point which was located at h/h

b =0.67 (h is the still 
water depth). At the measuring section, breaking waves were 
confirmed to be well developed into so-called "turbulent 
bore". A small pressure transducer of 1 cm in diameter, 3 
mm in thickness and 1 kHz in its frequency response was used 
for the measurement of bottom pressure fluctuation at the 
measuring section. The concentration of the suspended bottom 
sediment for the movable bed experiment was measured by a 
light-attenuation-type sensor, the position of which was 
manipulated to be kept at nearly the same height above the 
bottom through the movable bed experiment. 

3. Characteristics of Velocity Field Associated with Oblique 
Eddies 

3.1 Intermittent structure of bottom turbulence and pressure 
fluctuation 

Figure A shows the phase-averaged distribution of the 
turbulence intensity u' and w' at the several heights z 
above the bottom. The origin of the horizontal axis cor- 
responds to the phase of the zero-up crossing point of the 
water surface profile. The values indicated were calculated 
by averaging about 200 records of the high-frequency veloci- 
ty component data which is obtained through a moving-average 
filter with a averaging time of 0.1 s. We can see in this 
figure that the dependence of the turbulence intensity on 
the phase variation as a whole is not so distinct, though 
the turbulence intensity at z = 6.7cm slightly increases 
around the phase of wave crest. Especially, the turbulence 
intensity close to the bottom is almost uniform except the 
region around the phase of the wave crest , where the inten- 
sity becomes larger probably corresponding to the increase 
of the orbital velocity. 

Figure. 5, on the other hand, is a typical example showing 
the raw data of the water surface fluctuation n immediately 
above the velocity measuring point, the bottom pressure 
fluctuation p, and the velocity fluctuation u and w close to 
the bottom (z=o.7cm). In this figure, the bottom turbulence 
occurs not uniformly, but appears in a quite intermittent 
manner with the bottom pressure disturbances at the instants 
indicated by the arrows. Further, we should note that such 
an intermittent occurrence of the bottom turbulence can be 
found not under the wave crest, but around the phase of the 
the zero-down crossing point. This means that these inter- 
mittent turbulence is not caused by the bottom shear stress 
due to orbital wave motion. 

3.2 Conditional sampling analysis of velocity field 
associated with the oblique eddies 

Comparison between Figs. 4 and 5 leads us to the idea 
that the intermittent characteristics of the bottom turbu- 
lence may be lost through the averaging process by the usual 
phase-averaged method because of the random occurrence of 
the intensive bottom turbulence, as shown in Fig. 5. 

Considering the occurrence of such a highly intermittent 
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bottom turbulence behind the wave crest, we can expect that 
these disturbance is caused by the action of the obliquely 
descending eddies mentioned first. The results of the visual 
observation of the eddy evolution seemed to support this 
expectation. To confirm this point more quantitatively, we 
have investigated the flow structure related to the inter- 
mittent bottom disturbances by applying a conditional sam- 
pling technique. 

In Fig. 5, we can find also that the pressure disturbance 
occurs not so frequently as compared with the velocity 
disturbances. Its possible explanation is that the pressure 
disturbance occurs only at the instant when the pressure 
gage is directly hit by an obliquely descending eddy. Con- 
sidering this characteristics of the pressure record, we can 
utilize it as a trigger signal for the conditional sampling 
to detect distinctively the velocity data corresponding to 
the intermittent bottom turbulence. Namely, by inspecting 
whether the magnitude of the pressure disturbance exceed the 
prescribed threshold level or not, we can classify each 
individual wave record separated by the zero-up crossing 
method into conditionally sampled or rejected records. The 
scanning of the pressure disturbance for the conditional 
sampling was done within the phase interval [TT/2, 3TT/2] of 
each individual wave record, because the apparent pressure 
fluctuation calculated by the moving- average method may 
emerge in the phase intervals [0, TT/2] and [3ir/2, 2ir] 
through the effects of the water surface fluctuation around 
the wave crest and of the higher harmonics due to the wave 
nonlinearity (Fig. 6). The number of the wave records 
obtained through this conditional sampling is about 50, 1/10 
of the total wave records. 

Figure 7 represents the phase-averaged distribution of 
the turbulence intensity u1 and w' , where the solid and 
broken lines correspond to the conditionally sampled and 
rejected data, respectively. We can clearly see in this 
figure that the turbulence intensity of the sampled data at 
the most upper measuring point attains relatively large 
value around the wave crest and this intensive turbulence 
propagates obliquely downward as indicated by the arrows, 
while the turbulence intensity of the rejected data exhibits 
no appreciable dependence on the phase variation. This 
means that the obliquely descending eddies bring intensive 
turbulence to the bottom behind the wave crest. 

Figure 8 shows another result of the conditional sampling 
analysis where the phase-averaged distributions of the mean 
velocity, <u> and <w>, of the conditionally sampled and no- 
conditioned data are represented by the full and broken 
lines, respectively. In this figure, we can recognize that, 
in the large turbulence regions, both the onshoreward and 
the downward mean velocities are enhanced in the sampled 
records. This fact is directly related with the increase of 
the downward transport of the onshoreward momentum as 
described in what follows. 

The left and right figures in Fig. 9 represent the phase- 
averaged distributions of the momentum transport for the 
sampled and rejected records, respectively. The solid lines 
indicate the phase-averaged product of_the horizontal and 
the vertical velocity fluctuation, <(u-u) • (w-w)>, where the 
over bar means an operator to take a time average. Comparing 
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the left and the right figures, we can clearly see that  the 
momentum  transport  of the sampled  records  considerably 
increases as a whole. 

The broken lines, on the other hand, represent the product 
of the phase-averaged horizontal and vertical velocity 
fluctuation, <u-u>'<w-w>, The difference between the solid 
and broken lines corresponds to the turbulent momentum 
transport. The fact that the difference becomes large in the 
highly turbulent regions means that the production of an 
appreciable magnitude of the Reynolds stress accompanies the 
evolution of the oblique eddies. 

In summary, all of these results are consistent with the 
following conceptual model based on the obliquely descending 
eddies. That is, the eddies transport the intensive turbu- 
lence obliquely downward with the large onshoreward momentum 
at the upper layer of the water, and then brings the highly 
intermittent turbulent velocity and pressure fluctuation to 
the bottom. 

Considering these results obtained through the fixed-bed 
experiments, we can easily expect that this eddy action to 
the bottom plane causes sediment suspension in a wide extent 
of the surf zone. To obtain more definite results on the 
relationship between the eddy action and resultant sediment 
suspension, we have made movable-bed experiments, as 
described as follows. 

4. Relation between the Obliquely Descending Eddies and the 
Sediment Suspension 

4.1 On-offshore distribution of the mean sediment 
concentration close to the bed 

The on-offshore distributions of the time-averaged 
concentration c both at z=0.5cm located within the bedload 
layer and at z=1.0cm just above the layer are shown in the 
bottom of Fig.10. The values indicated were based on the 
data measured during the time interval of about 70s from the 
instant when the wave set-up was established until the time 
when the sediment ripples were generated. The initial 
bottom surface configuration was smoothened for each run. 
The upper figure, on the other hand, shows the distribution 

of the bottom turbulence intensity w' and of the amplitude 
of orbital velocity u normalized by the linear long wave 
speed at the breaking point. These values of w' and u are 
those measured at z=0.7cm in the fixed-bed experiments. 
Unlike for the values of the turbulence intensity indicated 
in Figs. 4 and 7, the averaging time for the numerical 
filtering of the raw data is the time of the incident wave 
period, because the vertical component of the near-bottom 
velocity contains negligibly small magnitude of the orbital 
velocity as compared with the turbulence. Hence w'-values 
so obtained include almost all contribution of the oblique 
eddy motion. 

Comparing the shape of these distributions each other, 
we can recognize that the sediment concentration level c in 
the bed load layer correlates well to u , while c above the 
layer varies in accordance with the bottom turbulence inten- 
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sity w'. This result suggests the close relationship between 
the sediment suspension and the action of the oblique 
eddies . 
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Fig. 10  Spatial distributions of mean concentration c   at 
z=0.5 and 1.0cm and those of bottom turbulence 
intensity w'   and amplitude of orbital velocity u 

4.2 Visualization of the eddy evolution and the resultant 
occurrence of sediment suspension 
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4.3 3-D structure of suspended sediment cloud in the surf 
zone 

The dependence of the sand suspensi 
eddies mentioned above may be confirmed mo 
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cloud;  i.e, if the oblique eddies lift up 
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with the probe spacings. The decrease is most noticeable in 
the frequency range from 0.8 to 5 Hz which is corresponding 
to the period of the incident waves and its higher harmonics 
and is comparable to the frequency of the eddy occurrence. 
This means that the sediment suspension inside the surf zone 
occurs in a quite spot-like manner and is consistent again 
with the proposed model of sediment suspension by the 
oblique eddies. 

5. Conclusions 

The results and conclusions obtained in the present study 
can be summarized as follows. 

1) "Obliquely descending eddies" bring highly intermittent 
turbulence to the bottom with the large onshoreward momentum 
and thus essentially characterize the turbulent flow field 
in the surf zone. 

2) The eddies hit the bottom and then lift up the sediment 
into suspension, yielding the spot-like sediment cloud in 
accordance with the 3-dimensional eddy structure. 
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