
CHAPTER 79 

SURF BEAT GENERATION ON A MILD-SLOPE BEACH 

Hemming A. Schaffer-1- and lb A. Svendsen^ 

ABSTRACT: Two dimensional generation of surf beats by incident wave 
groups is examined theoretically. An inhomogeneous wave equation 
describes the amplitude of the surf beat wave. The forcing function 
is the modulation of the radiation stress. The short waves are 
amplitude modulated both outside and inside the surf zone causing the 
long wave generation to continue right to the shore line. Resonant 
generation as shallow water is approached is included. The analytical 
solution is evaluated numerically and shows a highly complicated 
amplitude variation of the surf beat depending on the parameters of 
the problem. 

1.  INTRODUCTION 
Field observations show that on mild slope beaches a significant 

amount of wave energy occurs at frequencies far below the peak 
frequency of the incoming sea waves. The existence of such long waves 
were first reported by Munk (1949) who also speculated that the 
components with period around 2 minutes were caused by variation in 
height of the surf and he coined the name "surf beats." Also Tucker 
(1950) found long waves of 1-5 minute period with a height that 
increase linearly with the height of the short period sea, and a time 
lag corresponding approximately to the time it would take for a wave 
group to reach the breaker zone or beach and for a long wave generated 
there to be reflected back to the observation point. Longuet-HIggins 
and Stewart (1962,64) suggested that while the short waves are 
destroyed by breaking, the set-down wave generated by and following 
the wave groups outside the surf zone as a forced wave is reflected at 
the beach and propagates seaward as a free wave. 

Since the first recording, numerous observations have shown that 
the energy of surf beat can actually be very substantial and in some 
cases even exceed that of the high frequency wind waves (Wright et 
al., 1982) and the amplitudes at the shoreline can be comparable to 
that of wind waves (Guza & Thornton, 1982,85). 

Although no final proof has been established, it seems widely 
accepted today that the surf beats are generated by mechanisms in the 
nearshore region and that they are associated with modulations of the 
amplitude of the short-period incoming waves. However, several 
possible ways in which energy can be transferred from the high 
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frequency wind waves to the surf beats have been considered with more 
or less decisive results. It is likely that several possible 
mechanisms can be active either separately or at the same time. 
Closely related to the question of generation is the nature of the 
long wave motion in the nearshore region. In particular, it has been 
discussed extensively whether the nearshore long wave motion is 
dominated by forced or free waves; by progressive or standing waves, 
and whether it consists of crosshore directed (essentially two- 
dimensional) waves or trapped edge waves, which are three dimensional 
reflection-refraction wave patterns. 

The present work assumes that the surf beat can exist as a two- 
dimensional motion. It is inspired by the work of Symonds et al. 
(1982) who investigated a mechanism for generating two dimensional 
surf beat that had not been considered previously. That mechanism is 
based on the fact that waves initially of different height will break 
at different distances from the shore line and (more important) have a 
different height at breaking. The surf beats are generated by the 
variation which this breaking pattern causes in the total radiation 
stress in the region between the extreme seaward and shoreward 
positions of the breakpoint. The varying breakpoint generates a 
shoreward moving long wave with the frequency of the wave groups, and 
since the forcing takes place only in the breaker region the long wave 
is a free wave through the rest of the surf zone. At the shoreline 
this wave is fully reflected so that a standing long wave is formed in 
the surf. Outside the surf zone the reflected wave continues seaward 
as a progressive wave. 

In the model of Symonds et al., the groupiness of the waves is 
totally destroyed at the breaking point which is why there is no surf 
beat generation in the actual surf zone. A saturation model with a 
constant wave height to water depth ratio is used for the waves in the 
surf zone. 

In the work presented in the following, we allow the wave groups to 
be maintained all the way to the shoreline. Measurements as well as 
experiments with the surf zone model developed by Svendsen (1984) 
indicates that if there is a variation in wave height at the breaker 
point the waves will remain different through the surf zone. For 
simplicity, we model this by introducing a breaker height variation at 
a fixed breaking point. This will represent the other extreme 
relative to the situation studied by Symonds et al. Observations show 
that the true picture probably represents a combination of the two: a 
varying breakpoint with some groupiness left in the surf zone. A 
somewhat similar problem was studied by Poda & Mei (1981) using a 
multiple scale expansion and different assumptions about the relative 
magnitude of the wave components involved. Our result contains a 
resonant interaction which was also included in the analysis by 
Freilich & Guza (1984) although under different assumptions about the 
magnitude of the bottom slope. 

2.  DESCRIPTION OF MODEL CONDITIONS 
Since the phenomena associated with wave groups are quite 

complicated it may be useful to give a more detailed description of 
the situation which is created mathematically in the following. 
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Fig. 1:  Sketch of bottom topography and short wave variation 
considered. 

Region III 
The situation is depicted in Fig. 1. We consider a region of 

constant depth which could be a continental shelf, say, (region III in 
the figure). In the present study we simplify by letting the 
groupiness of the waves be caused by two regular incoming wave trains 
with slightly different wave number k0(l+O and k0(l-e) the second 
with a much smaller amplitude than the first. This implies that the 
surf beat wave becomes a simple wave of constant period which allows 
us to seek analytical solutions to the problem. The basic equations 
used, however, can also be applied to the general case of a time 
varying wave height as in a train of Irregular Stokes waves, but this 
would require a numerical solution. 

In region III we assume a quasi-uniform state. The modulation of 
the waves causes a variation in radiation stress which generates a set 
down wave, and we assume that the length of the wave height modulation 
is much larger than the depth so that the set down wave is a long 
wave. This set down wave and its propagation into the shore region 
was neglected by Symonds et al. (1982). 

Present in region III is also an outgoing long wave which 
represents the results of the transformations and reflections taking 
place in the nearshore region. The amplitude and phase of that wave 
is one of the unknowns of the problem. 

Region III is primarily introduced to be able to establish well 
defined and reasonably simple seaward boundary conditions for the 
problem. 

Region II 
In region II the depth is decreasing sufficiently gently that we 

can assume local solutions for short and long wave components. Thus 
the short wave will be shoaling towards the breaking point xg. During 
this process, however, the balance between the variation in radiation 
stress and set down wave is constantly changing which causes the 
forced set down wave to grow. As the short waves approach breaking 
their group velocity approaches that of the forced wave creating a 
state of almost resonance. We describe this dynamical process (in 
contrast to the equilibrium situation in region III) by a WKB 
approximation. 

For most values of the governing parameters we find that in spite 
of the resonant interaction the energy transferred from the short wave 
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to the forced wave is relatively small, and we therefore omit in the 
present paper to take the effect of this energy flux into account in 
the development of the short waves. There is no principle difficulty 
though in extending the formulation to include this effect as well. 

At the transition point x0 between region III and II the solutions 
for the two regions are matched by requiring continuity in mass and 
momentum flux for the long wave solution. These conditions cause a 
partial reflection at x0 of the set down waves, whereas it is assumed 
that no such reflection occurs for the short waves (either because of 
sufficiently deep water or because the transition between horizontal 
and sloping bottom actually takes place sufficiently smoothly to allow 
the short waves to adjust). 

Region I 
At xg the short waves are assumed to break. Since there is a 

temporal variation in the height of the waves reaching this point, we 
have a time-varying breaker height at xg. The dissipation of energy 
in the surf zone is proportional to H3 and therefore, although the 
wave height variation will decrease shorewards, those waves that are 
highest at the (fixed) breakpoint will always remain the highest, etc. 
Thus this mechanism implies that the groupiness of waves remains 
present all the way to the shoreline. It also implies that the 
generation process responsible for the modification of the forced long 
wave continues through the surf zone. 

Again we have chosen to use the simplest possible description of 
the processes involved. Thus a saturation model based on a—7I1, where 
h is the water depth, is used to describe the wave height variation in 
the surf zone of the short waves. Essentially the specification of 
wave height as a fraction of depth replaces solution of the energy 
equation for the short waves. Since the short wave height varies as 
the groups propagate shorewards, this means that the parameter 7 is 
7(x,t). 

The matching at xg again requires continuity in the mass and 
momentum flux for the long wave motion. The abrupt shift in the rate 
of change of the radiation stress represents a source of difference at 
the two sides of the matching point. 

At the shoreline the long wave is fully reflected and radiated 
seaward as a free wave. The background for this assumption is 
discussed below and involves some aspects that, although known from 
other areas of wave dynamics, do not seem to have been applied before 
to analyze the behavior of surf beats near the shoreline. 

3.  THE GOVERNING EQUATIONS 
The governing equations for the surf beat are derived from the 

depth integrated and time averaged equations for waves and currents 
(see e.g. Phillips, 1977; Mei, 1983). In those equations the set-up/ 
set-down will then correspond to the long wave surf beat and the time- 
varying current will represent the particle motion in that long wave. 
Since the equations are derived under the assumption that the current 
velocity is uniform over depth, their use implies that we assume the 
surf beat is everywhere a long wave (as already indicated). On the 
other hand, the equations contain all relevant non-linear terms in the 
current discharge and set-up (including the momentum flux due to the 
mass flux Qs in the waves). Thus the description of the long wave 
component of the wave motion is actually equivalent to that given by 
the nonlinear shallow water equations. 

The total water particle velocity u is split into 

u - u„ + U (3.1) 
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where U is the_velocity in the current, 1% that of the oscillatory 
motion so that u„ - 0 below wave trough level ( meaning average over 
a wave period). 

The relevant equations are then the continuity equation 

§Mi=° 
where b is the elevation of the mean water surface and 

Q - Qc + Qs  :  Qs - f  uwdx    ;   Qc - [  Udz   (3.3) 
J-h0 

J-h0 

IJ is the total surface elevation measured from a horizontal reference 
level.  The equation of shore-normal (x) momentum is 

|2+|_f§i+Isxx]   +gh|^+^=0 (3.4) 3t      3x  I h        p    XXJ       6 ax      p 

in which h is the local depth (including the long wave surface 
elevation), Sxx is the shore wave radiation stress and rD the mean 
bottom shear stress (which we will neglect here). 

Since we are particularly interested in the surface elevation b of 
the long waves we first eliminate Q from the linear terms of (3.2) and 
(3.4) by cross differentiation.  This yields 

32b a 
at2    a-x. H9-fe[F*H-0 

It is assumed that the total motion of any point consists of a 
quasisteady regular wave on which we superimpose a small perturbation 
(the amplitude modulation) that varies in time. Thus all wave 
averaged quantities have the form 

f(x,t) - f0(x) + f^x.t) (3.6) 

In particular the depth h is 

h(x,t) - h0(x) + b0(x) + b^x.t) (3.7) 

By assuming that there is a steady state basic solution of wave height 
variation it can be inferred that for this solution there is no net 
mass flux.  Hence by continuity Q0 = 0 and 

Q(x,t) - Q^x.t) (3.8) 

When these assumptions are substituted into (3.5) we get the following 
equation for bt 

a2b, — fefh +b 1 ^J- + 2b ^1 - d2S**,i =0       (3  91 

where Sxx ! represents the variation in Sxx due to the wave height 
modulation for the short waves (vide (3.6)). 

Finally, realizing that at most points b0- « h0 we neglect terms 
proportional to h,,^ so that the governing equation for the surf beat 
amplitude bt  becomes 
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82b, 
at2 3x 

32SX 
ax2 (3.10) 

This is a wave equation with a forcing term which represents the 
effect the wave height modulation has on the slowly varying surf beat. 
It is the same equation that was used by Symonds et al. (1982) but 
only in the region of the breaker point variation. Chu & Mei (1970) 
and Mei & Benmoussa (1984) derive the same equation for 3D by a 
multiple scale expansion of slowly varying Stokes waves. 

Following Mei & Benmoussa (1984) we let the short wave motion be 
composed of two waves with almost the same wave numbers 

ijj - T a, expli kjdx + «xt 

•Js - 2 *ai expli|k2dx + u2tl 

+ * 

+ * 

(3.11) 

where * means complex conjugate. 
In region III we have k, and k2 constant and we define k0 and e   so 

that 

kt - k0(l+O k2 - k0(l-O for x > xn (3.12) 

The equivalent change  in wave frequencies are given by the 
dispersion relation.  We have 

wg " 2 ^Wl ~~ "^ " 3k * ek° ~ c8° ek° " c50" eu>0       £or x > x°   (3-13) 

where Cg0 is the group velocity in region III for the wave with wave 
number K0 and frequency u0 and c0 = w0/k0. Equation (3.13) also 
defines «0 as approximately (,u>l+u>2)/2. 

The total short wave motion IJ — r\1  + r\^  can then be written 

1"jA exp ji I k0dx + u0t] + * 

where A is a complex amplitude.  With 

n„ = "=&• K„ - kn • ^ 

(3.14) 

(3.15) 

we get 

A - a, exp it K0dx + fi0t ] + S  exp -ie K0dx + n0t\\        (3.16 

or 

A - aje1" + Se"1*] 

where $  -  e  K0dx + «0t 

The radiation stress Sxx for the short waves is then given by 

(3.17) 
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If we therefore write Sxx according to  (3.6) we see that 

^Sxx,0  -fa?   (l+^pSg.l] (3  19) 

\ Sxx.i  = g*?«   \j** ~ |]   exp(2i») (3.20) 

Inside the surf zone the more general expression applies: 

isxx=g|A|*P (3.21) 

In the present context, however, we will, for simplicity, allow P to 
be approximated by (2cg/c0 - 1/2) since this only changes the results 
quantitatively not qualitatively. 

The variation of bt and Sxx j is described by 

bj - ba exp(2iefi0t) (3.22) 

sxx,i - sa exp(2ien0t) (3.23) 

so that 

Sa - a?« />g[|Sg - |j exp^iej^dx] (3.24) 

which substituted into (3.10) yields 

£_ fho «2a] + 4,2 9& ba _ _ J^ flfa (3.25) 
8x [ ° 3x J      g        Pg,  3x2 v 

This is the equation we solve. 

Variation of Carrier Wave Amplitude 
The two wave components ax and axS which together form the carrier 

wave will show a variation that in region II corresponds to a simple 
shoaling under conservation of energy flux.  Thus in region II we have 

f  l1* a' " [c^J ^   ;   ek°~  ai<h_a>) <3-26> 
In the surf zone (region I) the wave heights actually ought to be 

determined by one of the surf zone models developed in recent years as 
e.g. Svendsen (1984). This implies solving the energy and momentum 
equations using realistic descriptions for the relevant wave 
properties such as radiation stress, energy flux, and energy 
dissipation. If we assume that the wave height modulation in the wave 
groups is moderate, the breaker type will be virtually the same for 
all waves. Except perhaps for violently plunging waves (for which we 
know very little) this means that if two waves initially have 
different heights at the breaker point, the highest will remain so 
throughout the surf zone. Essentially this further implies that some 
groupiness is conserved also beyond the breaker point. How much of 
the original wave height modulation that actually is maintained will 
depend on how the variation in wave height influences the position of 
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the breaker point, an effect we, as mentioned earlier, have neglected 
here by using a fixed breaking point. 

The above mentioned groupiness would result also from the wave 
model by Svendsen (or other wave models based on solving the energy 
equation). For simplicity, however, we choose a simpler 
representation of this physical feature by using a modified saturation 
model.  In the surf zone we let 

where 72 - 7§ + 7?e 

|A| - 7h 

21   Particularly for |A|
2
 we get 

(3.27) 

lAl* - |A„ 

[ll  + Kl2 (e2i*+*]/2]h*       (3.28) 

The values of 70 and 7, are then according to the saturation 
hypothesis determined by the breaker heights of the waves. Since 
before breaking we have 

|A|* - (a£(l+S*) + a|S(e2i'+ *)) ^ 

we get 

and 

ag(l+S2) 
CSBhB 

(3.29) 

(3.30) 

(3.31) 

where index °° refers to deep water, index 3 to the values at the 
breaking point. 

4.  MATCHING AND BOUNDARY CONDITIONS 
To obtain a solution over the three regions described in Section 2, 

we need a boundary condition at the outer end of region III, matching 
conditions between II and III and between I and II, and a boundary 
condition at the shore line. Since (3.25) is a second order equation 
a total 2x3 conditions are required to establish the solutions in the 
three regions. 

Seaward Radiation Condition 
The seaward boundary condition is a radiation condition stating 

that there are no free waves propagating towards the shore, only the 
bounded (and known) set down wave. 

Matching Conditions 
At x0 and Xg the propagation conditions change, which causes 

changes in the constants of the general solution. We ensure 
continuity at those points by requiring that 

H!- " ° H (4.1a,b) 
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This corresponds to assuming continuity in mass flux across x0 and xg. 
Similarly, continuity in momentum flux can be obtained by applying 
(3.4) on the two sides of each matching point in combination with 
(4.1a,b).  This yields 

f3bal
X°     _1  raSa|X° ,,   , , 

[3?\K.  --^gho^y [a?\x. (4-2a) 

X
B XB 

These relations indicate that dba/dx will show a discontinuity at the 
two matching points, of which the one at hg is by far the most 
significant. 

Boundary Condition at the Shore Line 
The model assumes that the short waves are entirely destroyed by 

breaking. No similar mechanism, however, is available for the long 
forced wave which will approach the shore line with a finite amount of 
energy.  The wave must therefore be fully reflected there. 

It is worth noticing that near the shoreline we actually stress the 
assumptions underlying the solution, which are that the bottom slope 
is gentle (i.e., A=hxL/h remains small) and the amplitude to depth 
ratio 7S is small. As h -+ 0, however, wave length of the long wave 
will go to zero as h . Hence the slope parameter A will grow as h"^ 
for a constant hx. Similarly, the amplitude to depth ratio of the 
long wave does not remain small. 

The growth of A and 7S near the shoreline indicates that the motion 
is more appropriately described by the nonlinear shallow water 
equations. However, the basic equations (3.2) & (3.4), and therefore 
also (3.5), remain valid even under those conditions since no 
assumptions as to the magnitude of A or 7S have been invoked at the 
derivation of those equations. As mentioned previously, (3.2) and 
(3.4) correspond to this approximation, so that, close to the shore 
those two equations represent the appropriate description. Further 
away from the shore the NLSW-equations can then be matched to the 
linear solution as e.g. the wave equation (see Carrier, 1966). 

In the present case (3.10) is a linearized form of (3.5) since some 
approximations have been introduced to get from (3.5) to (3.10). 
Therefore (3.10) does not represent a proper approximation as h-+0. 

This also applies to the HKB approximation used to transform (3.10) 
to (3.25), since that approximation also requires A«0(1) correspond- 
ing to small changes in depth over a wave length. It does of course 
also require 7S « 1. 

For the time being we have chosen to disregard the problem and 
simply assume that the linearized equation (3.22) applies to the 
shoreline. The requirement of full reflection then corresponds to 
requiring that close to the shoreline the wave motion is a purely 
standing wave with zero net energy flux. Since this approach is in 
agreement with the actual physical situation it only means that the 
description is not accurate near the shoreline. At some distance this 
solution should be the same as if a more correct matching with the 
NLSW approximation had actually been made. 
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5.  SOLUTION FOR THE SURF BEAT AMPLITUDE 
The complete solution to the homogeneous version of (3.25) can be 

expressed in terms of two linearly independent Hankel functions 
representing two waves propagating shoreward and seaward respectively. 
The complete solution to the inhomogeneous equation (3.25) can then be 
found by the method of variation of parameters. In region I and II we 
get (i — 1,2) the complex solution 

ba,i~[H<1)(a^)(-ci1)+J
XH<2>(ayx)gadx) 

-^(^(cf^^g^x)] 
&  ^ 

where a - 4u„/7ghx.  In region III the solution is 

ba.s = C3 .""e^ + ba.o (5.2) 

*>a o - - ~    u  a 2 (5.3) 

The five constants C[xl, C[z| and C3 are then determined by the 
four matching conditions and by the boundary condition at the 
shoreline. 

The latter requires that the amplitude of the two wave components 
are the same and hence yields directly 

C'1' - C<2> (5.4) 

The four other constants are found numerically by solution of the 
flow complex equations resulting from applying the matching equations. 
The details are left out here. 

6.  NUMERICAL RESULTS 
After determining the equations for the integration constants in 

(5.1) (5.2) and (5.3) numerical results have been calculated by 
evaluating the 32Sa/3x

2 term by numerical differentiation and 
similarly the integrals by numerical quadrature. 

The problem under study has a substantial number of independent 
parameters. Clearly the bottom slope hx is a parameter, but since the 
bottom steepness that the waves actually "feel" depends on the 
waterdepth to wavelength ratio the relevant measure of the bottom 
slope can be shown from the solution to be A = hx L/h where L is the 
local wave length defined as cT. A is assumed to be small in order to 
allow the waves to adjust to the local depth as assumed in the basic 
equations. In the solution A occurs in connection with the matching 
process at h0 and hg which leads to the two parameters 

Ao = !W   &   AB = 1^       (6.1} 

The value of Ag is actually determined by the assumed breaker index y. 
Other (small) parameters are the ratio of group wave number to 

carrier wave number 

€  - (kt - k2)/2k0 (6.2) 
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and the steepness of the carrier wave system 

*s _ a«, ">§/g 

The small parameter 

S - 
2/
ai 

(6.3) 

(6.4) 

describes the weakness of the amplitude modulation causing the wave 
groups. Hence the problem is characterized by a total of five (small) 
parameters. In addition the dimensionless carrier wave frequency 
«on/g is °f course important for the carrier wave description and 
particularly the value of "o^o/g connects the scale of the bottom 
geometry (h0) to the length scale of the waves (g/o>o). 

a . „. _ , b by(Sam) by(6a„) 

4-  envelope 

—• ( =  0 

2~ --  t = T/4 

0- \~ ~  

2- 

4- 

K-1 i i i . , . . . 
0.2 0.3 0.4 0.5 0.2 0.3 

hBa'/g 
0.4 0.5 

h-u'/g 

by(6-aj 

0.0 0.1 

Fig.   2: 
Envelope   of surf  beat   motion  for 
three    different   values of    H0    - 
o>li o/g- 
a: Ho=0.5, R-0.90 
b: Ho-1.0, R-4.74 
c: H0-5.0, R=37.5. 
In all  cases   €s=0.10  and 2hx<o0/wg 

al     line = 0.20. The      vertic 
corresponds to hB«o/S- 
Instantaneous profiles at t=0, 
are also shown. 

T/4 

h-a'/g 

Fig. 2 shows the variation of the solution for the envelope ba for a 
selection of parameter values. The three parts a, b & c corresponds 
to three different values of the parameter HQ - «§h0/g (0.5, 1.0 and 
5.0).   In all three cases all other parameters have been kept 
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unchanged so that the three figures indicate the effect of increasing 
the depth h0 in front of the slope (see Fig. 1) relative to the wave 
length of the carrier wave system. 

Since it is difficult to compare the wave patterns as a whole we 
have chosen here to focus on the ratio between the amplitude of the 
wave propagating seawards in the constant region depth over the 
amplitude of the incoming set-down wave in the same region. This 
"reflection coefficient" R is a measure of how much the original set- 
down wave is amplified by energy transferred from the short wave 
system. 
The variation of R we see in Fig. 2 is mainly due to the fact that 

the amplitude of the free (reflected) wave varies as hj, whereas the 
set-down wave decreases as hj1 as h0 increases. Notice that for H0 - 
1.0 and 5.0 the figure does not show the whole slope region. 

bS(6-aJ by(6 aw) 

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.! 0.2 0.3 0.4 0.5 

h,-uc'/g h-a„'/g h,-ac'/g h-a,'/g 

Fig. 3 
Surf beat envelope for 2hxw0/w„ - 
0.05, H0 = 1.0 and three different 
short wave steepnesses.  The data 
are a:  es - 0.05, R = 27.79 

b:  es = 0.10, R = 12.77 
c:  e- - 0.15, R - 6.89. 

0.3 0.4 0.5 

K-^'/g   h-ui/g 

In Fig. 3 the total slope length has been kept constant and the 
position of the breaker point varied. The reflection coefficients of 
up to 28 show a significant amplification of the set down wave.  On 
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the other hand, the value of R is biggest for the most narrow surf 
zone. 

From those observations one might arrive at the conclusion that the 
surf beat generation primarily takes place on the slope seaward of the 
breaker point. This idea might be further supported by the fact that 
in the surf zone the minimum envelope amplitudes are very small as if 
the amplitude of the outgoing, reflected wave were nearly the same as 
the shoreward moving surf beat. (Clearly this becomes a better and 
better approximation the closer we get to the beach, as should be 
expected.) 

To check this conjecture Fig. 4 shows numerical experiments with the 
same general data as in Fig. 3b (which is repeated in Fig. 4a for 
comparison). In Fig. 4b, however, we have artificially suppressed the 
surf beat generation inside the surf zone by letting the right hand 
side of (3.25) be zero in region I. Thus the long wave in the surf 
zone is now a standing free wave. We see there is a substantial 
reduction in the height of the surf beat generated as measured by the 
reflection coefficient, which drops from 12.77 to 8.58. 

J(6 a*») a 
 envelope 

10- 

. 
—• t  =  0 

: -- t = T/4 

fin A f\ r\ 
0- 

V V V" v 

• r 1 W   \ /   ^-^ 

: 
10- 

v 

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 

h.-u,'/g h-u'/g 

0.2 0.3 0.4 0.5 

h-i-u'/g h-u,'/g 

Fig. 4 
Surf beat envelope for 2hxu0/u„ - 
0.05, H0 - 1.0, £S - 0.10. 
a:  Same as Fig. 3b, 
b:  No long wave generation inside 

the surf zone, R - 8.58, 
c:  No long wave generation 
outside the surf zone, R - 
10.08. 
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Similarly Fig. 4c shows a numerical experiment in which there is no 
long wave generation at all until in the surf zone. There the long 
wave motion outside the breaker point is a purely progressive wave 
moving seaward after having been reflected from the shoreline. This 
seaward oriented wave is now 10.8 times the set-down wave we would 
have had in the constant-depth region III had the generation been 
normal. In Fig. 5a-c the same type of experiment has been repeated 
for the same wave period and slope width but with the breaker point 
moved seaward by a change in carrier wave steepness. The picture is 
seen generally to be the same. 

by(6a„) 
10- 

Fig. 5 
Same as Fig. 4 except 2h_u0/«„ - 
0.10, es - 0.15, H0 - 1.0     

S 

a:  R - 5.38, 
b:  no long wave generation inside 

the surf zone, R - 3.61, 
c:  no long wave generation 
outside the surf zone, R - 
5.10. 

As mentioned in section 2, as the waves move to shallower water the 
wave number of the wave groups approaches the wave number of the free 
wave solution to (3.25) and hence the generation process assumes the 
character of a resonant transfer of energy from the short waves to the 
shoreward moving long wave. This aspect of the process is equivalent 
to the resonant interaction first pointed out for water waves by Mel & 
Unluata (1972). Only here we meet a somewhat more complicated form 
where the wave number of the driving force instead of being constant 
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is slowly drifting towards the resonant wave number as the waves move 
shoreward. Although we have not yet studied the details of this 
situation it is undoubtedly the resonant nature of the process which 
is responsible for the large amplification indicated by the enormous 
reflection coefficients. On the other hand, since the nearly resonant 
interaction only takes place over a finite distance the amplitude of 
the surf beat of course remains finite. 

7. ACKNOWLEDGMENTS 
This research was carried out on a contract with the Danish 

Engineering Science Research Council. Ivar G. Jonsson is acknowledged 
for useful comments on this presentation. 

8. REFERENCES 
Carrier, G.F. (1966).  "Gravity Waves on Water of Variable Depth," J. 
Fluid Mech.. 24, 4, 641-659. 

Chu, V.H. & C.C. Mei (1970).  "On Slowly Varying Stokes Waves," -L. 
Fluid Mech.. 41, 873. 

Foda, M.A. & C.C. Mei (1981).  "Nonlinear Excitation of Long-Trapped 
Waves by a Group of Short Swells," J. Fluid Mech.. 111. 319-345. 

Freilich, M.H. & R.T. Guza (1984).   "Nonlinear Effects on Shoaling 
Surface Gravity Waves," Phil. Trans. Roy. Soc., 311, 1-41. 

Guza, R.T. & E.B. Thornton (1985).  "Observations of Surf Beat," J,. 
Geophv. Res.. 90, C2, 3161-3172. 

Guza, R.T. & E.B. Thornton (1982).  "Swash Oscillations on a Natural 
Beach," J. Geophvs. Res.. 87, Cl, 483-491. 

Longuet-Higgins, M.S. & R.W. Stewart (1964).  "Radiation Stresses in 
Water Waves:  A Physical Discussion with Applications," Deep Sea 
Research. 11, 529-562. 

Longuet-Higgins, M.S. & R.W. Stewart (1962).  "Radiation Stress and 
Mass Transport in Gravity Waves, with Application to Surf Beats," J. 
Fluid Mech.. 13, 481-504. 

Mei, C.C. (1983).  The Applied Dynamics of Ocean Surface Waves. John 
Wiley & Sons, N.Y-. 

Mei, C.C. & C. Benmoussa (1984).  "Long Waves Reduced by Short-Wave 
Groups Over an Uneven Bottom," J. Fluid Mech.. 139, 219-235. 

Mei, C.C. & U. Unluata (1972).  "Harmonic Generation in Shallow Water 
Waves," in Waves on Beaches. R.E. Meyer ed., Academic Press, N.Y. 

Munk, W.H. (1949).  "Surf Beats," Trans. Am. Geophvs. Union. 30, 849- 
854. 

Phillips, O.M. (1977).  The Dynamics of the Upper Ocean. Cambridge 
Univ. Press. 

Svendsen, I.A. (1984).   "Wave Height and Set-up in a Surf Zone," 
Coastal Enp.. 8, 303-329. 

Symonds, G., D.A. Huntley & A.J. Bowen (1982).  "Two Dimensional Surf 
Beat:   Long Wave Generation by a Time-Varying Breakpoint," J. 
Geophvs. Res.. 87, Cl, 492-498. 

Tucker, M.J. (1950).  "Surf Beats:  Sea Waves of 1 to 5 Min Period," 
Proc. Roy. Soc. Lond.. A202, 565-573. 

Wright, L.D., R.T. Guza & A.D. Short (1982).  "Surf Zone Dynamics on a 
High Energy Dissipative Beach," Mar. Geol.. 45. 41-62. 




