
CHAPTER 71 

STORM STATISTICS IN THE NORTH SEA 

By 
B.A. Salih1, R. Burrows2 and R.G. Tickell3 

1.0 INTRODUCTION 

Effective planning of offshore activities requires statistical infor- 
mation detailing storm occurrences and durations (defined as excee- 
dences of an Hs threshold). This information is often referred to as 
persistence. 

The frequency of storm events and the probability associated with a 
number of successive sea states being above (or below) a given threshold 
level is often required by engineers to estimate the potential work 
period and down-time as well as to incorporate the lead and lag times 
needed to stop and restart interrupted operations due to severe weather 
conditions. 

However, until recently, a lack of sufficiently long data bases has 
precluded any meaningful investigation of this nature. Unrepresent- 
ative or misleading results can follow from data records that were 
measured over only a limited number of years. Furthermore, significant 
distortions may be introduced if the data record is not continuous as 
data gaps interrupt the persistence pattern. 

As more recorded data have become available, concerted efforts have been 
' made on this topic; most notably by Houmb and Vik who developed a pro- 
babilistic model describing the statistics of storm (and calm) dura- 
tions and frequencies at varying levels of sea state intensity. 

The present study investigates the adequacy of the semi-empirical pro- 
cedure proposed by Houmb and Vik and also discusses the development of 
two new modelling techniques. The performance of these models are ex- 
amined against wave data measured at the BP Forties field in the North 
Sea. A number of new statistical descriptors relating to the profile 
and intensity of storms have also been developed. 

It is recognised that wave period (Tz) and directional information must 
ultimately be incorporated in a storm climate model. However, this is 
beyond the scope of the present discussion. 
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1.1 DEFINITIONS 

In the work reported here, the definition of storm events as proposed 
by Houmb & Vik (1976) is adopted: 

A storm is defined as a period of time during which the significant wave 
height, Hs, exceeds a threshold a (see Figure 1). The onset of a storm 
condition at a is marked by an upcrossing of the level Hs = o. Measures 
of storm (D ), calm (D ) and storm inter-arrival (D) durations are also 

indicated. 

Ds — STORM DURATION 

Dc - CALM DURATION 

D     -DURATION   OF STORM  INTER-ARRIVAL 

HSp — PEAK   Hs  IN   STORM 

Figure 1: Definition of storm occurrences and durations. 

1.2 DATA 

The data used in this study have been measured at the BP Forties Field 
located in the North Sea. 

The original data bank contained measurements extending over the period 
from June 1974 to December 1981. Measurements of significant wave 
height based on 20 minute recordings of sea surface elevation were made 
using Wave Staff and Wave Rider Buoy instruments. Unfortunately, the 
data is not continuous. In some cases measurements are missing over 
periods of up to several months. Owing to the importance of a contin- 
uous data set for the assessment of storm statistics, the data was 
subjected to a rigorous treatment and various steps were followed to 
compensate for data gaps (see Salih, 1987). As a result, it was pos- 
sible to extract 5 years of almost continuous data covering the period 
from January 1977 to December 1981. 

1.3 RESULTS AND DISCUSSION 

1.3.1 Houmb and Vik Model 

Initially attention is focused on the semi-empirical procedure proposed 
by Houmb and Vik (1977) and later developed by Pastene-Beytia (1976) 
and Dale (1979). The analysis of threshold crossings yields that the 
storm frequency at a given threshold is expressed as: 

C (a - A) 

fs(«) 

C-l 

BC /2TT 

a - A 

•(1.1) 

Where afts|a   is the standard deviation of the first time derivative of 

the Hs time trace at the sea state level a, and A, B and C are the pa- 
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rameters of the Weibull distribution approximating p(Hs). 

The expression is derived utilising the main assumptions that: 

a) The marginal distribution of Hs can be approximated by a 3-parameter 
Weibull pdf. The validity of this has been demonstrated by many studies 
in the field of Long-Term wave statistics (see Burrows et al,1986). The 
analysis of the Forties data supports the Weibull distribution as an 
accurate description the probability 'mass' and the extreme tail of the 
Hs distribution. 

Nevertheless, the Weibull distribution is often noted for its poor re- 
presentation of the lower values of Hs. Thus the use of alternative 
distributions such as the Log-Normal, as proposed by Ochi (1978), and 
the NMI modified Log-Normal, proposed by the National Maritime Insti- 
tute (and now British Maritime Technology) (see Fang et al, 1982) has 
also been assessed against observations. Statistical goodness-of-fit 
tests, however, has established the Weibull distribution as a superior 
descriptor of the observed p(Hs) (see Salih, 1987). 

b) The second important assumption in the procedure is that the dis- 
tribution of HS|HS can be represented by a mean-zero Gaussian distrib- 
ution with a variance, o*. iH_ that linearly varies with level a- 

HS | MS 

II  Observed pdF 

. Gaussian  Baussian is* 

Year 1981 

Figure 2: 
Probability density 
functions of Hs with 
Gaussian pdf superimposed. 
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Figure 2 and Figure 3 point to the acceptability of both these assump- 
tions. Houmb & Vik noted no seasonal variation in the a.   , versus a 

i .. •  i • HSI a 
relationship. An alternative procedure for storm modelling proposed by 
Graham (1983) implies that there is no seasonal variation in the re- 
lationship between ofts|Q(Hs^ and Q(Hs)=l-P(Hs). 

The results of this study, however, indicate the existence of a sys 
tematic seasonal variation in the relationship in question. It can b 
noted from Figure 3 that the summer and winter months' linear re 
lationships fall on either sides of the average 

a  relationship. 
yearly1 <j. .  versus 

This systematic variation has been taken as a justification to param- 
eterise the linear relationship (in the form of a.       =K a) in terms of 

Hs statistics. As the main input to the storm model are the Weibull 
fit parameters, the slope of the straight line, K, has been regressed 
against A, B and C and the following least square relationship has been 
found to provide reasonably accurate estimates: 

0.0476 A0'201 B0-116 C0-185 

.(1.2) 

The expression of Equation 1.2 has been used to predict frequencies of 
storm events at varying levels of sea states and have been found to 
compare favourably with observations as can be seen from Figure 4. The 
different curves arise from the use of the Weibull and NMI modified 
Log-Normal distributions for p(Hs) and the average 'yearly' estimates 

°f °fts|Hs. 
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Figure  4:   Average  frequency  of   storm  occurrences 
with prediction  from  Houmb  &  Vik  model. 

The      average     duration     of     storms,     Ds(a),      can     be     obtained     from 
Equation 1.1  as 

Ds(a) = 
Total time (Hs > a) 

Cs(a) 

Total number of storms 

BC /2TT 

C(« " A)C_1 °fts|a 

l-P(Hs) 

fs(a) 

•(1.3) 
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The average durations of calms, defined as non-exceedence of the a 
level, and the average inter-arrival of storms (and calms) can be ex- 
pressed as: 

Dc(a) 
P(a) 1.0 

D=(a) .(1.4) 
fc(a) fc(o) 

Hence the average duration of storm inter-arrivals at level a becomes: 

1.0 
Di(a) = Ds(o) + Dc(o) 

f(a) 

.(1.5) 

Average durations evaluated from Equation 1.3 to Equation 1.5 are com- 
pared with observations in Figure 5; again the modelling procedure 
closely approximates the observed behaviour. The noted discrepancy be- 
tween long durations, in part at least, arises from sampling problems 
and also in how to deal with long sequences which extend beyond the 
seasonal date windows (ie storms in February, say, terminating in March 
or starting in January). 

0  0.5 I  I.5 2  2.5 1     '.i.! 

Hs/Hs 

,  , Average Duration tf Stor«s      u o Cat's       a o Sic"* InlwMrrmls 

uiws OEHoii miiiciws nut /mm i m rmi 

Figure 5: Average Durations of storms, calms and 
s t o r m. _ .in t er-axrivals. with predictions 
f tom_.Hcu_mb&_Vik model. 

1.3.1.1 Distribution of Durations 

The use of a basic Poisson model for the description of storm events 
has been argued by Houmb & Vik. The suitability of this model requires 
that: (a) the arrival rate of storms is stationary, (b) the probability 
of storm occurrences in a short interval of time is proportional to the 
length of the interval and (c) the probability of multiple storm events 
in a short period of time is insignificant compared to a single event. 

If the storm events are described by a Poisson model, then distribution 
of storm durations is exponential.  Whilst some of the theoretical 
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justification for the adoption of exponential model for storm durations 
follows from a Poisson assumption for storm events, as indicated by 
Houmb and Vik, the underlying assumptions are not fully satisfied in 
practice. Houmb & Vik, however, found little empirical evidence to 
support this and instead proposed the use of the more general 2-param- 
eter Weibull distribution. Dale (1979) reports, nevertheless, that the 
distribution of storm durations at Seven Stones1 light vessel off the 
South West coast of England become exponentially distributed at higher 
threshold levels of sea state. 

Figure 6 points to the general acceptability of the Weibull model and 
also confirms Dale's observation that the distributions, towards the 
higher thresholds, become exponential. This is perhaps an indication 
that the assumptions inherent in the Poisson model become more valid 
at these thresholds. 
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Figure 6: Distribution of storm durations with 2 parameter 
Weibull model superimposed. 

1.3.2 Gaussian Transformation Model 

It was anticipated that the technique of transforming a general set of 
correlated random variables into the Gaussian form would enable the 
utilisation of the wealth of theory available for Gaussian processes. 

The time series of Hs, Hs(t), modelled by a Weibull distribution can 
be transformed into a mean-zero Gaussian process, X(t), of unit variance 
by applying the approximate formulae for Gaussian transformation given 
by Ab'ramowitz & Stegun (1964), 

X(t) 

C  + C f + c f2 L0    lr    2 

1 + dxf + d2f
2 + d3f

3 
+ error .(1.6) 

where |error| < 0.00045, and 

f = • ln(- 
Q(Hs(t)) 

.(1.7) 

Q(Hs(t)) is the exceedence probability of Hs(t) ( / p(Hs) dHs) 
Hs(t) 

The basis of this procedure is illustrated diagrammatically in Figure 
7. The original process, Hs(t), and its Gaussian transform peak jointly 
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and crossings of the level Hs=a corresponds to crossings of X=B in the 
transformed domain 

Figure 7: Gaussian transformation of random variables 
using distribution functions. 

The Gaussian transform of Hs(t) is characterised by a wide band power 
spectrum. Estimates of the spectral band width parameter, E, derived 
from duration statistics, are found to be approximately 0.950 for summer 
months and 0.965 for winter months. 

Various storm characteristics can be expressed in terms of the standard 
deviation of X, which is unity by virtue of Equation 1.6, and that of 
the first time derivative of X, X, using results of the classical 
mathematics associated with stationary Gaussian processes. The fre- 
quency of storm occurrences is equivalent to the frequency of up- 
crossings of the level B, 

N+(B) = 
2TT  O„ 

exp[ -0.5 ( )z] .(1.8) 

The frequency of up-crossing by Hs(t) of the sea state threshold level 
of a can be obtained as 

N+(B) = N+(o)  (1.9) 

The average durations can be deduced by the same arguments followed to 
obtain Equation 1.3 through Equation 1.5 

In order to justify the application of the theory of stationary Gaussian 
processes, the problem of non-stationarity has been avoided herein by 
considering monthly periods. This implies that the statistics for 
monthly periods are assumed stationary from year to year. 

The predictions of average storm, calms and inter-arrival duration 
arising from the use of this technique are found to compare favourably 
with the observed behaviour as can be noted from Figure 8. The pred- 
ictions are also presented in Table 1 alongside estimates obtained from 
the Houmb and Vik procedure. It is apparent the transformation tech- 
nique provides, on the whole, the more accurate predictions. 
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Figure 8:   Average  Durations of  storms,   calms and 
storm  inter-arrivals with predictions 
from Gaussian  transformation  model. 

a/Hs Observed Houmb 
& Vik 

Gaussian 
Transf. 

Markov 
Weibull 

Markov 
log-Norm. 

0.5 271.5 106.4 153.3 69.9 134.2 

1.0 30.8 24.7 29.2 21.9 22.7 

1.5 17.5 12.4 16.9 14.2 13.0 

2.0 10.4 7.8 12.3 10.3 9.7 

a/Hs Observed Houmb 
& Vik 

Gaussian 
Transf. 

Markov 
Weibull 

Markov 
log-Norm. 

0.5 153.3 105.4 108.6 57 .2 123.2 

1.0 41.9 30.1 36.0 26.0 28.3 

1.5 23.9 14.8 21.4 16.4 17.1 

2.0 9.8 9.0 15.3 9.0 13.0 

January 

October 

Table 1. Average duration of storms and inter-arrivals with pred- 
ictions from Houmb & Vik, Gaussian Transformation and 
Markov models 

The main advantage of the transformation technique is that additional 
statistical descriptors of 'storm shape1 can be established from the- 
ory. In particular, the distribution of peak amplitudes of a wide-banded 
Gaussian process can be used to predict the distribution of peak Hs 
attained within the duration of a storm. This aspect is to be discussed 
in a later section. 
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Furthermore, the technique enables more complex measures of storm sta- 
tistics to be developed; the theory relating to Gaussian processes can 
be utilised to establish probability distribution of storm duration. 
Price and Bishop (1974) derive a distribution for exceedence duration 
by following a method originally proposed by Rice (1944,1945) However, 
the resulting expression is inherently complex and requires the evalu- 
ation of various higher order spectral moments. In the absence of a long 
stationary data base, such spectral moments cannot be reliably deter- 
mined and in subsequence this aspect has not been pursued in the present 
study. 

1.3.3 Markov Chain Model 

The use of the first order Markov chain theory to model the time series 
of Hs requires that only successive sea states, Hs. and Hs. j, are 

statistically correlated. In reality, however, sea states several time 
steps apart may exhibit appreciable statistical correlation. Thus, at 
first the validity of the Markov theory, defined to the first order, 
may be suspect. 

Nevertheless, it has been established from the study of the Houmb & Vik 
procedure that o. ,0 increases with the threshold level of Hs. Hence, fls]ns 
lesser correlation between successive larger sea states can be antic- 
ipated since the linear correlation coefficient is inversely related 
to the variance. Therefore, the acceptability of the Markov model, at 
least at these higher levels of Hs, is likely to be enhanced. 

The Markov model used in the context of storm modelling requires the 
identification of two states of the process Hs(t), namely that of ex- 
ceedence and non exceedence of the level a- The transition probabilities 
(see Kimura, 1980 and Longuet-Higgins, 1984) associated with these two 
states can be represented as: 

p+= / yp(Hsi+1,Hsi) dHSi dHs.+1/ / /p(Hs.. ,Hs .+1) dHs.. dHsi+1 

o a 0 a 

p.= ; /p(Hsi+1,Hs.) dHS;L dHsi+1/ / /pfHs^Hs^) dHSi dHsi+r . . . (1.10) 

0 0 0 0 

Where p(Hs.,Hs. .) represents the joint probability density function 

of successive sea states. 

It can be shown that the probability of Js sea states consecutively 
exceeding the level a is given by: 

p(Js) = p+
Js_1 (l-p+)  (i.il) 

and it follows that the mean number of sea states exceeding o is: 

1 
Js = I  Jsxp(Js) =     (1.12) 

1 (1-P+) 



NORTH SEA STORM STATISTICS 965 

Similarly,   the   distribution  of  storm  inter-arrivals can be  formulated 
as: 

p(Ji)   =   (1   -  p+)(l   -  p_)(p+
Ji_1  -  P.J1"1)/(P+  "  P.)    (1-13) 

and the mean number of sea states between storm inter-arrivals follows 
as: 

Ji = £ Jixp(Ji) = +    (1.14) 
2 l-p+    l-p_ 

The only problem remains to choose a suitable probability distribution 
to model p(Hs.,Hs.+1): An obvious choice may be the bi-variate Weibull 

distribution originally developed by Rice (1944,1945) and Ulhebeck 
(1943) and applied more recently by Kimura (1981) to model the joint 
probability distribution of individual wave heights and periods, 
p(H,Tz). However, it has been found that the conditional statistics of 
the observed p(Hs.,Hs. .) is characteristically different from that 

inherent in bi-variate Weibull function (see Salih, 1986). 

The use of the bi-variate Log-Normal probability distribution, used by 
Ochi (1987) to model the long-term joint distribution of Hs and average 
zero crossing periods has also been investigated; more accurate repre- 
sentation of the conditional probabilities is- obtained than with bi- 
variate Weibull model. It must be noted, however, that this choice does 
not affect the relative merits of either the Log-Normal or Weibull 
functions to describe the marginal distribution of Hs, p(Hs). 

Using both of these bi-variate distributions, the average durations of 
storms are predicted from the Markov model and the results are presented 
in Table 1. Also included in this table are the corresponding estimates 
for the Houmb & Vik and the Gaussian transformation procedures to enable 
the direct comparison of the various models. 

It is apparent that the Markov model consistently underestimates the 
average durations at the lower thresholds. This arises mainly from the 
fact that successive sea states are strongly correlated at these levels 
and thus the assumptions inherent in the Markov model are more severely 
violated. In line with this reasoning, the predictions become in closer 
agreement with observed averages towards the higher sea state levels. 
The accuracy of the Markov model can be of the same order, and occa- 
sionally marginally better, as that noted for the Houmb and Vik proce- 
dure. 

This property renders the Markov model particularly useful for engi- 
neering applications where the synthesis of storm statistics at these 
higher thresholds can be of particular importance. 

Furthermore, the Markov model enables the modelling of the distribution 
of storm durations without the need to invoke any extra assumptions. 
Figure 9 shows that the Markov predictions are in close agreement with 
the observed distributions for storms at higher thresholds. 



966 COASTAL ENGINEERING—1988 

£ i—i     \—f^n.—s—arsr 
nxi pmmiun or m exaitea t» 

7^ 

*£'- ̂
' 
,^ 

filter ft Used 

2 0. Log-Hornat 
1.       I.     T).   i.    i jur 
rtx) msisiurr of m CICCIKHCC <>.I 

Ools Denote Observed Cdf 
January (1978-198)) 

— Exponential flarkov -Hoi-hoy (Using Obs, Ds t 0) 

Figure 9: Distribution of storm durations with 
predictions from Markov model. 

1.4 STORM SHAPE DESCRIPTORS 

The storm models discussed do not provide information regarding pro- 
files and energy contents of the storm events. A variety of statistics 
can be utilised for describing the storm intensity or severity at given 
threshold level of sea state. A complete description of the probability 
distribution of Hs within the duration of the storm would be an ultimate 
solution. However, this is expected to be rather complex and difficult 
to test empirically. An alternative approach, that is of lesser com- 
plexity, would be to specify certain statistics that characterise the 
storm profile and from which the severity of the storm can be inferred. 

It is considered that useful insight may be obtained by investigating 
the distributions of the peak Hs attained in a storm, (Hs ), the mean 

Hs within the storm events, (Hs ), or the distribution of the root mean 

square Hs, (/Hs2s). The latter statistic may be taken as a measure of 

mean sea state energy per unit time. 

Figure 10 plots the probability distribution of peak Hs attained within 
the duration of a storm normalised by the threshold level a. 

The predictions arising from the Gaussian transformation model are su- 
per-imposed on Figure 10.a. These are based on the expression for dis- 
tribution of amplitudes in a wide-banded Gaussian process. The results 
are found to follow the observed behaviour quite reasonably. However, 
the match is far from exact and the discrepancy arises from certain 
assumptions associated with the theoretical model (principally that the 
theory relates to the description of all 'local' maxima whilst only 
storm 'global' peaks are of significance to this application). 

The 2-parameter Weibull distribution has been found to accurately model 
the upper half of the distribution of Hs as can be noted from Figure 

10.b. 
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Figure 10: Distribution of peak Hs within a storm- 
fa) with predictions from the Gaussian transformation model 
(b) with predictions from 2 parameter Weibull model 

Figure 11 shows that the average Hs within the duration of a storm can 
be modelled accurately by a 2-parameter Weibull distribution. The use 
of other empirical distributions has also been assessed and established 
that the shifted exponential and Gamma distributions prove generally 
acceptable for this purpose. 

The distribution of root mean square Hs within the storms can be used 
to provide information relating to the energy content of the storms. 
Using expressions from the linear wave theory it follows that: 

Energy per unit surface area is proportional to E[Hs2] 

The results presented in Figure 12 point to the suitability of 
parameter Weibull model. 

the 2- 
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1.5    CONCLUSIONS 

It is concluded, as judged from the Forties data, that the Gaussian 
transformation technique provides more accurate predictions of average 
durations of events than the other two models considered in this study. 
Furthermore, the potential of utilising the wealth of theory relating 
to Gaussian processes makes the technique a viable and indeed a superior 
alternative to the more traditional procedure proposed by Houmb and Vik. 

The distribution of maxima of a wide band Gaussian process has been used 
to predict the distribution of storm peaks and the results of the pre- 
sent study point to the general validity of the resulting distribution 
particularly towards higher sea state thresholds. 

However, further testing and calibration of the transformation model 
requires access to longer data bases that can be used, for example, to 
reliably extract the various, higher order, spectral parameters re- 
quired for the definition of the distribution of durations. 

The Markov model proves a useful tool in characterising the storm sta- 
tistics at higher thresholds of sea states where both the average du- 
rations and the distribution of durations are reasonably well 
represented. It is important to note that the specification of the 
distribution of durations is an integral part of the Markov approach. 

Similar studies are now required on data sets from differing locations 
and degrees of exposure in order to assess the site specific element 
of the storm models discussed herein. 
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