
CHAPTER 69 

A Steady-State Wave Model 
for Coastal Applications 

Dr. Donald T. Resio* 

A steady-state spectral model is presented. This model 
produces a solution equivalent to a full time-stepping 
spectral model, but at much reduced computational times. 
Comparisons shown here demonstrate that the spectral model 
provides a good representation of shallow-water wave propa- 
gation phenomena and that wind effects can significantly 
influence near-coast wave conditions. 

Introduction 

Over the last twenty years a wide range of numerical 
models have been developed to assist coastal engineers, 
planners, and scientists in the estimation of near coastal 
wave conditions. Early models were based on monochromatic 
wave theory and ray tracing methods. Subsequently, models 
have developed along two lines, monochromatic and spectral. 
The major distinction between the two approaches pertains 
to the degree of randomness assumed in the physical system. 
If waves are primarily deterministic, variations in the 
phase function must be considered and nonlinear behavior of 
the type discussed by Yuen and Lake (1975) or Berkhoff 
11976) can result. On the other hand, if waves are con- 
sidered to be a random superposition of essentially linear 
components, nonlinear behavior must be treated as indepen- 
dent of phase. Nonlinearities of this kind relate to wave- 
wave interactions of the type discussed by Hasselmann 
11962) and result in energy fluxes among the linear com- 
ponents which can become very important in shallow water 
(Resio, 1987, 1988). Also, as will be discussed later, 
diffusive energy fluxes due to spatial variations in energy 
can also be treated independent of consideration of the 
phase function. 

In deep water, spectral models have gained a clear 
advantage in terms of being able to represent important 
aspects of wave generation, propagation and decay. In near 
coastal environments, some persist in using linear, 
monochromatic models (refraction diagrams, shoaling 
coefficients, monochromatic diagrams, etc.), however most 
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serious applications have now moved on to either spectral 
models or nonlinear models of combined refraction- 
diffraction of the type described by Berkhoff (1976) and 
Ebersole et al. (1986). Unfortunately, both of these 
classes of models require considerable computer resources 
for their execution. The purpose of this paper is to 
introduce a variation of spectral modeling which is much 
more efficient in terms of computer time and storage 
requirements than previous methods. The accuracy of this 
model and its potential application in various situations 
is then dicussed. 

Theoretical Considerations 

Overview 

Although all of the equations used below can be 
generalized to include the effects of currents, for sim- 
plicity and in order to express these equations in terms of 
energy densities rather than action densities, it is 
assumed here that currents are negligible. In this case in 
the absence of energy sources and sinks, we have 

(1)    FUl) = constant 

along a wave range where k^ is the wave number vector and 
F(JO is the energy density at that point. Or, if energy 
sources and/or sinks are significant we have, along a ray 

<2> JTIJiJ-   =   zsi^> -}f- 
where S' represents a single source/sink term and t is 
time. In conventional spectral models, a spatial grid such 
as seen in Figure 1 is laid out. At each point in such a 
grid, an equation equivalent to (2) is solved 

,-is dEit,?)*'?^)     _     3CCflE(f,e
x'v't)  „ 

lJ) 3t      "       ax        c9x + 

2cc0E(f,6*>y't) 
3y      c9y + 

ZSi(f,6,x,y,t) 

where E(f,ex'y»t) is the conventional spectral energy 
density in frequency-direction space, c is the phase 
velocity and eg the group velocity, respectively, of waves 
with frequency f, x and y are orthogonal spatial axis, sub- 
scripts "x" and "y" denote component values in those direc- 
tions, and Si(f,9) represents the effects of the ith source 
term. The five-dimensional nature of (3) readily in infers 
one of the major problems associated with its computer 
solution. The dependence of energy densities and sources 
on x,y,t have been explicitly written in equation (3) in 
order to point out this problem. In subsequent usage, 
dependencies on space and time will be assumed but not 
written; thus, E(f,e,x,y,t) will now only be written 
as E(f,9). At each point in the grid, equation (3) must be 
solved for each frequency-direction component over each 
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time stop. A "typical" number of frequencies and direc- 
tions is about 300. If we use as an example a grid 
covering 10 miles by 10 miles with a spatial resolution of 
1/4 mile, equation (3) must be solved about 80 million 
times in a simulation in order to achieve steady-state 
conditions (i.e., in order to perform the appropriate wave 
transformation). 

Some groups have attempted to use a different approach 
to solve the problem of predicting near coastal wave 
spectra (Abernethy, et al., 1977). As seen in Figure 1, 
wave rays can be "backtracked" out from a point of 
interest. It is then possible to calculate equation (3) at 
each point along each of the rays shown there, provided 
that the form of the source terms in (3) are such that the 
spectral components can be considered as uncoupled. 
Unfortunately, the wind source term, wave-wave interactions 
and wave breaking are not treated adequately in this 
context. In all existing wave models, the net energy input 
into frequency components above the spectral peak becomes 
quite coupled by the normalization methods used to achieve 
a particular equilibrium range behavior. Also, the net 
source to the forward face due to wave-wave interactions 
and the redistribution of energy on the rear face depends 
on the local specrtral shape. Similarly wave breaking 
depends on the total energy in the spectrum. Since infor- 
mation of this kind is not calculated, the source term 
treatment in such a model must necessarily be somewhat 
arbitrary and imprecise. Thus, if we seek an accurate 
solution to (3), we are left with the need to perform our 
calculations over an entire grid, rather than along rays 
passing irregularly through it. In this way all complete 
spectral information is available at each grid point and 
all source terms can be reasonably estimated. 

Figure 1.  Example of wave rays converging on point A at 
the coast. 

Let us assume that we are not interested in energy 
propagating away from a coast. Even if such waves exist 
they will not affect the incoming waves very much since the 
peak frequencies in incoming spectra will almost always be 
very different from the outgoing spectra.  In this context, 
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all of the source teems and propagation effects can be seen 
to reside essentially within a half-plane. This is the key 
to recognizing a much more efficient solution method for 
steady state wave transformations. 

The coastal wave transformation process can be regarded 
as one involving internal mechanisms (primarily wave-wave 
interactions and wave breaking) and external mechanism 
(primarily wind forcing and possibly some bottom inter- 
actions) . For a given spectrum at the seaward boundary, if 
winds are relatively constant over the time span required 
for the waves to propagate across the grid (typically only 
15 minutes to 1 hour for near-coast simulations), a simpli- 
fied solution to (3) may be employed with essentially no 
loss of accuracy. In this context let us proceed to a 
solution of the transformations of the wave transformations 
from the first column to the second. An adequate solution 
for this problem can, by induction, be extended to the 
remainder of the grid. 

Propagation 

Since (3) is an inhomogeneous partial differential 
equation, solution techniques usually solve the homogeneous 
part first (essentially wave propagation) and then solves 
the inhomogeneous part (the effects of source terms). 
In order to avoid time consuming calculations, some 
simplifications are in order. If a ray passing from 
column 1 to column 2 does not pass through a caustic, 
Snell's law may be used to specify the angle and height 
variation from one depth to another 

(4) 92 = sin_l(e,c2/c1) 

where subscripts "1" and "2" refer to the column locations. 
For waves which pass through a caustic, an approximate 
solution is used. 

(5) 62 = 2tan-l(tante!5) exp("|| |]jW2cg)) 

where h is the local water depth and AS is the distance 
along s from a point in column 1 to a point in column 2. 
Regardless of whether or not the wave ray passes through a 
caustic, it is assumed that F(JO remains constant as it 
should for a conservative system. In terms of the 
frequency-direction form for spectral energy densities used 
in equation (3) this means that 

(6) cCgE(f,0) = constant 

which provides sufficient information for closure of the 
propagation problem. A modeling system based on this 
approach can be used to construct ray segments "piecewise" 
from column to column. 

Divergence-Convergence Effects 

Equation (6) is the typical form for wave propagation 
found in most spectral models today.  Its validity as seen 
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here follows from the ray-based concept of wave 
propagation. However, if we examine the situation in 
Figure 2 as an example of a potential problem, we see waves 
propagating along the trough of a bathymetric feature. The 
wave ray traveling straight down the trough will not move 
to either side since the slope orthogonal to the ray path 
is zero. whereas this may actually be true for the 
infinitesimal-width ray exactly in the center, it is not 
true for any rays displayed any distance whatsoever to 
either side. If, for example, all the energy in a spectrum 
were concentrated in that energy band propagating down the 
trough, the usual solution method would indicate that there 
would not be no change in wave height down the trough. 
It can be shown that, in general, the ray-based solution 
method does not represent divergence-convergence of wave 
rays over a grid cell. Thus, for a more accurate solution 
as may be warranted in sensitive applications, a 
divergence-convergence term is explicitly added to the 
solution method here.  The form of this term is 

17) 
3E(f,6) 
 3T tn 

where r xs   the net flux of energy across a row boundary of 
the grid. 

Figure 2.  Example bathymetry for waves propagating 
over a crest. 

Consideration of Diffraction in a Spectral Model 

A detailed treatment of diffraction within the steady- 
state spectral model introduced here is considerably beyond 
the scope of this paper; however, a brief description of 
the general methodology will be given. First, one must 
recognize that since spectra are assumed to have random 
phases, phase relationships for a diffracted wave are only 
fixed between that wave and the individual component which 
created it. Thus, one cannot convert directly from a 
solution to the Fresnel Integrals and presume that the 
amplitude functions represent freely propagating waves. 
Instead,  it is necessary to treat any phase-dependent 



934 COASTAL ENGINEERING — 1988 

amplitude interaction in the context of a bound wave, bound 
to the spectral component which created it. However, it 
appears, as will be shown later, that phase-dependent 
solution techniques may only be required in situations 
with very steep energy cutoffs and very narrow spectral 
widths. 

If we ignore phase effects, diffraction resembles a 
diffusion process. Any variation in wave amplitude along a 
wave creates results in a spatial redistribution and 
redirection of the wave energy. The following is used to 
represent the effects of diffraction in areas not affected 
by steep surface-piercing structures. 

+1   +2 
(8) Ejif^ijn+U  X    1      eKx,Ei+lclf,8i+s,) 

JU_i  K=-2 

where the subscript j refers to a grid row, i references 
an angle band, and eK5_ is a matrix of normalized 
multipliers. 

Source/Sink Integration 

The source terms employed in this model are similar to 
those discussed in Resio (1987, 1988) There are four 
source terms in the model: 

1. wind inputs; 

2. energy fluxes due to wave-wave interactions; 

3. wave breaking; and 

4. bottom interaction effects. 

For all tests of source terms, bottom friction and other 
bottom interaction effects will be assumed to be negligible 
compared to nonlinear energy fluxes. 

Tests of Steady-State Spectral Model 

Tests of Propagation Only 

A simple case to demonstrate that the spectral 
representation of refraction and shoaling used here is 
consistent with theoretical monochromatic results can be 
found in the propagation of waves with different periods 
and propagation directions across a slope with parallel 
depth contours. For this case, the monochromatic waves 
were approximated by a spectrum with energy in an angular 
band of one degree centered on the specified approach angle 
with a frequency band of 0.01 hertz. As seen in Table 1, 
the computed results show very good agreement with 
theoretical predictions. 
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Table 1 

Wave Heig ht Comparison 

Depths (ft.) 

Angles 50 20 10 5 

lo) a b a b a b a b 

0 .96 .96 .92 .92 .98 .99 1.11 1.11 

10 .96 
9.70 

.96 
9.70 

.92 
8.00 

.92 
7.80 

.98 
5.70 

.98 
5.90 

1.11 
4.60 

1.10 
4.30 

20 .96 
19.30 

.95 
19.40 

.91 
15.50 

.91 
15.40 

.97 
11.60 

.96 
11.70 

1.09 
8.30 

1.08 
8.60 

30 .95 
29.20 

.95 
29.00 

.89 
22.90 

.89 
22.90 

.94 
17.20 

.94 
17.20 

1.05 
12.60 

1.05 
12.50 

40 .95 
38.40 

.95 
38.50 

.86 
29.80 

.86 
29.90 

.90 
22.30 

.90 
22.40 

.99 
16.00 

.99 
16.20 

50 .94 
48.10 

.94 
47.90 

.82 
36.70 

.82 
36.50 

.84 
26.90 

.84 
27.00 

.92 
19.50 

.92 
19.40 

60 .92 
57.30 

.92 
57.10 

.76 
42.40 

.76 
42.30 

.75 
30.90 

.75 
30.80 

.82 
21.80 

.82 
22.10 

70 .87 
65.70 

.87 
65.60 

.65 
47.00 

.65 
46.80 

.63 
33.80 

.63 
33.80 

.68 
24.10 

.68 
24.00 

80 .73 
72.80 

.73 
72.60 

.48 
49.80 

.48 
49.90 

.45 
35.50 

.46 
35.60 

.49 
25.20 

.49 
25.30 

NOTE: a = theoretical result 

b = model result 

To test this model in a situation in which linear models 
are expected to be inaccurate, the model was run for the 
elliptical shoal, monochromatic test case described in 
Vincent and Briggs (1988), which is patterned after that of 
Berkhoff et al. (1982) . The bathymetry for this case is 
shown in Figure 3. Figure 4 shows a comparison of the 
waves predicted by this model to those measured in the 
laboratory. Also shown in that figure are the modeled 
results of a finite difference solution to the "mild slope" 
equation (Ebersole et al., 1986). As seen there, the 
spectral model can reproduce the monochromatic, even for 
this nonlinear case, results quite well. 
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Figure  3.     Laboratory set-up for  waves  over  an elliptical 
shoal   (from:  Vincent and Briggs,   1988). 
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Figure 4.  Comparisons of results from spectral model to 
laboratory measurements for monochromatic case. 

Our next test drops the artificial constraint of 
monochromatic waves and examines model behavior for more 
realistic cases with reasonable wave spectra. Vincent and 
Briggs  (1988)  set up a series of laboratory tests on 
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bathymetry shown in Figure 3 in the directional wave basin 
located at the U.S. Army Engineer Coastal Engineering 
Research Center. The input spectrum tested here is shown 
in Figures 5 and 6. Waves were measured along a cross- 
section located about 17 feet behind the crest of the shoal 
as seen in Figure 3. Figure 7 gives a comparison of the 
steady-state spectral model's performance compared to the 
measured waves, along with the "equivalent" monochromatic 
solution (i.e. the solution obtained by treating these wave 
spectra as equivalent monochromatic waves). Clearly, the 
influence of spectral shape cannot be neglected. In fact, 
for waves typical of moderate storm conditions, the mono- 
chromatic approximation overpredicts wave heights by about 
120%. Even for the case of a spectrum typical of swell, 
the monochromatic predictions are too high by about 100%. 
In neither of these test cases were waves observed to be 
undergoing wave breaking over the shoal; thus, the results 
shown in Figure 7 should be a fair examination of 
propagation effects only for realistic wave spectra. 

0.50      0.75       1.00       1.25 
FREQUENCY, HZ 

1.50 

Figure 5.  Input frequency spectrum for test case. 
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Figure 6.  Angular distribution of energy for test case. 
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Figure 7.  Comparison of results from spectral model to 
laboratory measurements for broad directional 
spectrum.  Equivalent monochromatic results 
shown for reference. 

Tests of propagation and Source Terms Together 

As some final test cases, let us consider first a situa- 
tion with a 40-knot wind blowing perpendicular to the coast 
over a planar shelf with constant slopes of 1/10 and 1/100. 
The boundary deep-water spectrum is specified to have a 
JONSWAP shape (6 = 3.3, fm= 0.10 hz, a = 0.013, aa= 0.07, 
o.= 0.09) with a cos^O angular distribution of energy. 
Table 2 shows the behavior of wave height as a function of 
distance from shore for the case with the wind source term 
included and for the case with the wind source neglected. 
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Next, let us consider a 40-knot wind blowing at an angle of 
50° relative to the coast compared to the zero-wind case. 
Table 3 shows these results. Differences such as seen in 
Tables 2 and 3 could be very critical on sensitive 
projects. 

Table 2 

Comparison of Predicted Wave Heights (Metres) for 40-Knot 
Wind Blowing Straight Toward Coast and No Wind 

Slope = 1/10 Slope = 1/100 
Depth No Wind  40- -Knot Wind No Wind  40- -Knot Wind 

90 6.11 6.11 5.84 5.97 

80 6.06 6.07 5.60 5.82 

70 5.99 6.01 5.38 5.68 

60 5.90 5.94 5.18 5.54 

50 5.79 5.83 4.97 5.39 

40 5.64 5.69 4.75 5.22 

30 5.47 5.53 4.52 5.01 

20 5.32 5.38 4.27 4.75 

10 5.33 5.35 3.82 4.07 

Table 3 

Comparison of Predicted Wave Angles (Degrees) for 40-Knot 
Wind Blowing at 50° Angle to Coast and No Wind 

Slope = 1/10 Slope = 1/100 
Depth No Wind  40- -Knot Wind No Wi .nd 40' -Knot Wind 

90 0 0.3 0 0.5 

80 0 1.2 0 6.4 

70 0 2.5 0 10.3 

60 0 3.0 0 15.4 

50 0 3.3 0 17.5 

40 0 3.1 0 18.2 

30 0 2.2 0 16.8 

20 0 1.5 0 14.9 

10 0 0.9 0 6.3 
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Conclusions 

A steady-state spectral model has been briefly described 
here. This model has a run time typically over 100 times 
faster than time-step solutions to comparable problems. 
Tests of this model support the following conclusions 
relative to shallow-water wave modeling: 

1. The model described here, even neglecting phase- 
dependent bahavior, can produce reasonable simu- 
lations of a wide range of wave conditions, both 
monochromatic and spectral, even in conditions 
which significant nonlinear behavior is expected; 

2. Equivalent monochromatic methods cannot produce 
accurate results for realistic wave spectra; and 

3. Simulations of areas on the scale of 5 miles or 
more should consider wind effects on nearshore 
waves; otherwise, the simulated results can devi- 
ate significantly from conditions expected under 
the action of winds. 
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