
CHAPTER 60 

Closed-Form Solutions for the Probability Density of 
Wave Height in the  Surf  Zone 

William R.  Dally1,   M.ASCE and Robert  G.   Dean2,   M.ASCE 

Abstract 

By invoking the assumption that in the surf zone, random waves 
behave as a collection of individual regular waves, two closed-form 
solutions for the probability density function of wave height on planar 
beaches are derived. The first uses shallow water linear theory for 
wave shoaling, assumes a uniform incipient condition, and prescribes 
breaking with a regular wave model that includes both bottom slope and 
wave steepness effects on the rate of decay. In the second model, the 
shallow water assumption is removed, and a distribution in wave period 
(incipient condition) is included. Preliminary results indicate that 
the models exhibit much of the behavior noted for random wave transfor- 
mation reported in the literature, including bottom slope and wave 
steepness effects on the shape of the probability density function. 

Introduction 

The probability density function (pdf) for wave height in the surf 
zone is a subject of distinct import, as the transformation of random 
waves due to shoaling and breaking is the primary driving force in beach 
dynamics. Figure 1 contains histograms of_ wave height, H, non- 
dimensionalized by the local average height, H, observed at different 
times at the same location in the inner surf zone during the DUCK '85 
field experiment, as reported in Ebersole and Hughes (1987). Note that 
the general shape of the pdf varies significantly, depending on incident 
wave characteristics and tide elevation. It is stressed that the pdf 
does not appear to have a typical shape, at least one that is easily 
recognized. 

Most previous efforts to model the transformation of random waves 
along a beach transect, e.g. Collins (1970), Kuo and Kuo (197 5), Goda 
(1975), Battjes and Janssen (1978), and Thornton and Guza (1983), start 
with the Rayleigh distribution outside the surf zone, and rely on the 
assumption that the height of an individual wave is directly propor- 
tional to the local water depth in order to represent energy dissipation 
due to breaking; i.e., 
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Figure 1 - Sample histograms of dimensionless wave height (H/H) observed 
at the same location (pole#6) during DUCK'85 field experiment. Data re- 
ported in Ebersole and Hughes (1987). Waves were identified using the 
zero-down-cross technique. 
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H = yh (1) 

where h is water depth and y is a coefficient whose behavior must be 
parameterized empirically. As described by Collins (1970), this results 
in a pdf shape that at its upper limit contains a spike of finite area - 
a shape not supported by data. Kuo and Kuo (197 5), Goda (197 5), and 
Thornton and Guza (1983) remove this behavior with various ad hoc treat- 
ments that require additional empirical fitting. However, adopting a 
single basic shape for the pdf a priori results in only limited agree- 
ment to the wide variety of histograms found in reliable field data, as 
evidenced by Figure 1. 

Mase and Iwagaki (1982) and Dally and Dean (1986) approach the 
problem in basically the same manner as Collins (1970), but employ 
models more realistic than (1) for describing the decay of individual 
waves. Because the pdf is allowed to transform "naturally", i.e. no 
typical shape is adopted a priori, better agreement with observed histo- 
grams is attained. While y in (1) has been parameterized in terms of 
bottom slope and deepwater wave steepness, the expressions for decay of 
individual waves adopted by Mase and Iwagaki (1982) and Dally and Dean 
(1986) include the effect of bottom slope and wave steepness on the 
shape of the decay profile. That Is, they model the observational fact 
that the gradient in wave height is rarely uniform across a beach of 
uniform slope (see Horikawa and Kuo, 1966). In result, for random waves 
the observed dependence of the transformation of both the pdf and sta- 
tistically representative waves (e.g. Hrms and H1/3) on beach slope and 
mean wave steepness, as discussed in Thornton, Wu and Guza (1984) and 
Sallenger and Holman (1985), is more faithfully represented. Both of 
these models require numerical solution which, although suitable and 
practical for engineering application, does not facilitate study of the 
general behavior of the pdf. The purpose of this paper is to present 
two closed-form solutions which will hopefully serve to better edify the 
problem of random wave transformation, and provide a theoretical foun- 
dation for future work in stochastic modeling of surf zone dynamics and 
design of engineering projects. 

Closed-Form Solution #1 

The first closed form solution is the subject of an upcoming paper 
by one of the authors (Dally, 1988), in which its derivation, analysis 
of the behavior of the solution, and comparison to field data are des- 
cribed in detail. Consequently, only a brief overview Is presented 
below. 

As an initial condition, we adopt the Rayleigh pdf for wave height, 
truncate it at some realistically large wave height, and assume no waves 
are breaking, i.e., 

2H.,        H? 

H   . H   A rmsi      rmsi 

pdf (V = TT~ exp ~t"T~] Hi ^ Thi 

Ht > yh^ (2) 

where the subscript "i" denotes initial conditions.  Set-up is not 
included, and in this first solution y  is assumed constant. 
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The area lost above the truncation point, £2t, is equal to 

>2 a = /  pdf(H ) dH = exp -(^/H   r (3) 
Th1 

which shows that starting in water much deeper than the root mean square 
wave height will make fit negligible. Otherwise, the pdf should be nor- 
malized by dividing by the quantity (1 - ftt). The random variable % is 
now transformed to local wave height H due to either shoaling or break- 
ing, as a function of the local water depth, h. 

Shoaling waves - It is now assumed that linear shallow water wave 
theory is valid, so that from Green's Law 

H± - H (h/h^
174 (4) 

Calculating the Jacobian and performing a standard transformation of 
random variable yields 

2 
pdf(H)gh f-  (h/ht)

1/2 exp[-~- Whi)
UZ] (5) 

H   . H   . 
rmsl rmsi 

where subscript "sh" denotes the pdf for shoaling waves. This distribu- 
tion, which still has a Rayleigh shape, must be truncated at the largest 
wave height that can occur at the local water depth, i.e., H <^ yh. If 
the random variable is non-dimensionalized by the initial root mean 
square height, Hrmgi, we obtain 

pdf(A) . - 2A h1?2  exp (-A2 h1/2) A < A (6) sn r — max 

where A = H/Hrmsl, Anax = Yh/Hrmsl, and h = h/ht. 

Breaking waves - The probability density function of wave height 
for broken waves is derived in a similar manner, but in two steps. The 
random variable Hj is first transformed to h^,, the water depth at which 
incipient breaking is attained, by applying Green's Law 

Hi - * \5/4 V1/4 <7> 

To transform from hjj to H, we utilize the analytical solution to the 
model of Dally, Dean, and Dalrymple (1985) for regular waves breaking on 
a planar beach (neglecting set-up). When inverted this solution becomes 

H2 + ah2      l/(5/2-K/m) 
hb " t  2 _,. . ,(K/m-l/2)J (8) 

(y    + a) h 

where 

(K/m)r2 (9) 

(5/2 - K/m) 



WAVE HEIGHT IN SURF ZONE 811 

m is beach slope, K is the decay coefficient (~ 0.17), and T the stable 
wave factor (~ 0.50). Performing the transformation and again nondimen- 
sionalizing by Hrmsi, the portion of the pdf due to broken waves is 

;(l/2-K/m)     K/m yh 2        ,, 

P^'V,"    K„„2B
+    ."Pl-drV)    ^   1   'Amin<A<AmaX |(5/2  - K/m)|(Y    + ct) rmsi 

(10) 

f  rmsi-)     .2 .2 
^\     '    A    + a n      1/(5/2-K/m) 

Where B  '  [     2 x     ,  r(K/m-l/2)] (11) 

(Y    + a)  hv  ' 

This distribution must be truncated not only at the upper limit 
Amax = Yh/Hrmsi, but also at the lower bound given by the breaking wave 
height that corresponds to the largest wave of the original pdf(H^). By 
applying the original solution for regular waves we find 

A ,  - h min 
(K/m-1/2) ,2 x . _ „ -2 

1/2 
(/ + a) - a h/]   (bj/H^j)       (12) 

If y  and m are such that the decay profiles are convex, A^x and kmin 

switch. 

The expressions (6) and (10) are plotted in Figure 2a for a beach 
slope m = 1/80 and y = 0.78, in Figure 2b for m = 1/50 and y - 1.0, and 
in Figure 2c for m = 1/20 and y = 1.2. Note that for the mild beach 
slope, as one moves into the surf zone, area is taken from the shoaling 
pdf and "piled up" at the lower breaking wave heights of the breaking 
pdf and not the upper limiting wave height, as is the case for the steep 
beach and was assumed by Collins (1970). This is in at least qualitative 
agreement with field data, as demonstrated by the observations of 
Ebersole and Hughes (1987). The apparent discontinuity in the model pdf 
at the lower limit of the breaking portion also appears in this data 
set, as is shown in Figure 1. However, the model does tend to 
overpredict the amount of this abrupt jump in the pdf; plus, observed 
histograms display a slightly more gradual decline over the upper range 
of wave height, as opposed to the truncation assumed by the model. 
These characteristics in the model result from neglecting the mechanisms 
present in nature which smooth the pdf, such as surf beat and a varying 
height to depth ratio at incipient breaking. The numerical solution of 
Dally and Dean (1986) and Dally (1987) includes both of these effects. 
In the next closed form solution to be presented however, it is only 
practicable to address the variation in the incipient breaker condition. 

Closed-Form Solution #2 

To improve upon the first solution, in the following the shallow 
water assumption is removed and the incipient condition varies according 
to a general form for available empirical expressions, e.g. Moore 
(1982), which is a hybrid of Weggel (1972) and Komar and Gaughan (1972): 

H 4/5 

y  = b(m) - •(«) [-^5 (r^)   ] (13) 
(2TT)

4/5
 

L
O 
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where 

a(m)  - 43.8(1.0 - e~19 m) (14) 

b(m)  =  1.56/(1.0 + e""19*5m) (15) 

L Is wave length and the subscript "o" denotes deepwater conditions. 

These improvements require knowledge of the distribution of wave 
period, and so we will conduct a series of transformations of a joint 
pdf in two random variables. In the final step the second random vari- 
able is integrated out to obtain the marginal pdf of shoaling and break- 
ing wave heights. It Is noted that the formulation presented below is 
identical In basis to one solved numerically in Dally and Dean (1986). 

The Initial condition is taken to be the joint probability density 
function for wave height and period in deep water as derived by Longuet- 
Higglns (1983), which is 

R2 2 
pdf(Ro,x) = Cy  -| exp{-R2[l +12<1 ~ \)   ]} (16) 

where R„ - H /H  „ - H /V8a7 (17) o   o rmso   o   0 

al 
and T = T/T = T  — (18) 

2*a0 

T and T are wave period and average wave period, ag is the area under 
the measured spectral density function in deep water, and a\ Is the 
first moment of this area. The coefficient C\  is given by 

Cj «-i- [l + (1 + v2)"1/2] (19) 

and v is the band-width parameter determined by the first three moments 
of the spectrum 

an a,        1/2 
«-r ?_2 !] (20) 

(ax) 

Shoaling waves - Although the transformation could be performed in 
one step, for better tractibility, the pdf for shoaling waves will be 
developed in two steps. The first is to transform x to deepwater rela- 
tive depth, DQ 

2 

Do " koh - -^T" h <21> 
gT 

and so 
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T - ;£ (-£-) (22) 
T       8  o 

and the joint pdf is transformed to 

ci o  T   <,    1/2     9    i     T SD« X/2 2 
pdf (Ro>D ) = ^ R2 f^ (^  exp(-R2{l + ij[l - f^)   ] })    (23) 

O V 

The second step is to transform the deepwater wave height to the 
local shoaling wave height. By applying conservation of energy flux and 
invoking linear wave theory yields 

2 
„      „ g tanh kh + gkh(l - tanh kh) 

% I?= R C m ] (24) 0
 ** 2(gk tanh kh)1/Z 

From the dispersion relation and adopting the notation D = kh, (24) 
reduces to 

2   2 

*o = R2["^-T £] <25> 

An approximate solution to the dispersion relation given by Hunt (1979) 
is 

0 0 Do 
D =Do + S"2  (26> 

1 + I d D n ,  n o n=l 

in the present notation (dn are provided constants), and (25) can now be 
expressed explicitly in terms of DQ 

R „DJ i + i/d +£>   1/2 

o 
R{  LWU^;  } (27) 

[1 + l/D (1 + Z)]i/Z o 

where Z denotes the summation in (26). Finally, the joint probability 
density function of shoaling wave height and deepwater relative depth is 
produced 

pdf(R,Do)sh=^Do-
1/2Do-

1/2{ I'7' *2 exp(-R2{ }{l +\ [1 -(V'Y}) 
V      D 

°    (28) 

in which { } denotes the expression within the braces of (27) and 

D0 = kQ h = ^ h = 2u ^£22° jp*— . 2ir S h (29) 
L L   rmso o o 

S is mean deepwater wave steepness and h is dimensionless water depth. 
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The marginal pdf for dlmensionless shoaling wave height is found by 
integrating between proper limits (numerically) with respect to deep- 
water relative depth D0. These limits are defined by the incipient con- 
dition, which is a function of deepwater steepness and bottom slope. 
This function can be expressed in a general form which encompasses most 
of the empirical relationships for y  available in the literature: 

D R 
S = H /L =-2-^°-= [F(m, Y)]P (30) 
0   ° °  21th 

As an example, for y  given by (13) 

(m) - r (2iQ4 

a(m)   0.36 
rb(m) - r (2ir)4/5-| .  . 
L—Ztt n.• J (31) 

and 

5/4 (32) 

The essence of the problem at hand is, given the local water depth 
and choosing a wave height of interest, what is the deepwater relative 
depth of the single wave that is at incipient breaking, if such a wave 
exists. If it does exist, all waves of that height but with smaller 
relative depth are still shoaling, while all waves of that height but 
greater relative depth are already breaking. Thus to determine the 
marginal pdf of shoaling wave height, the joint pdf(R,D0)sjj is inte- 
grated according to 

D 
mpdf(R)sh = / ° pdf(R,Do)sh dDQ (33) 

o 

where DoI is the deepwater relative depth of the wave with height R at 
incipient breaking. D0j must be calculated numerically as is described 
in Dally (1987). 

Breaking waves - Four steps will be required to derive the pdf of 
wave height due to breaking, represented conceptually by 

H 
pdf(H ,T) => pdf (H , f^) => pdf(H ,Y) => pdf(h. ,y) 

o 
y2 

->  pdf(H,Y)br ; mpdf(H)br = /  pdf(H,Y)b dy (34) 
Yl 

Again starting with (16) and applying 

R H    1/2   R    1/2 
^(-o-po) =(_°s0) (35) 

o L o o 

we obtain 
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C    R 3/2 R 

S V o 
(36) 

In the second step,   (30)  is  employed so that 

pdf(Ro,Y)  --ji (Sor
1/2Ro

3/2 P F
(P/2_1)

|8F/3Y|   • 

exp(-Ro
2{l  +iY[l  -4so)"1/2]2}) (37) 

° v Fp 

We now apply conservation of energy flux between the deepwater wave 
and the same wave at Incipient breaking  (which is in shallow water) 

„  2 T   1/2/- 2.2 

-2—2 R. 2/ihT = -5-*- /iir (38) 
2/2? ^        b      R 2 b 

rmso 

Rearranging and applying  (30)  yields 

RQ - hb(8it)1/5 Y4/5[F(m,Y)]p/5 (39) 

where hb « ^b^Hrmso'  and the 3olnt P<*f °^ hb an<* Y *s determined 

pdf(hb,Y)  -^<?or
1/2<ta)1/2  Y2 P F^   |3F/3Y|   V"2  • 

-9 9/s    R/s  Ws 1 h\(8w)1/5  Y4/5"S„ "1/2  2 
expC-h^s,)2/5 Y

8/5
F

2
P
/5

{I +lj{l -(-> -5^73 £)       ]  }) (40) 

The final transformation again utilizes the inverted analytic 
solution for wave decay on planar beaches (8) which in the present 
dimensionless notation is 

\       [h(K/m-l/2)(Y2 + a)] (") 

Finally,  the joint pdf of R and y for breaking waves is 
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pdf(R,Y)br = ll(sor
1/2 (8*)1'2 ,2p ,<P-» iw/ayl [ ](37^> 

1 2R 

exp 

|5/2 - K/m| -(K/m-l/2)(Y2 + a) 

(-[ ]('^:K7^)
(8,)2/5Y8/5F2p/5 

[ F•>(8*)1/5 74/5 S  -1/2 2 

^"( ^ ft)   1» 
(42) 

where [ ] denotes the quantity In the brackets of (41). The region of 
Integration for y and the numerical procedure followed are described In 
detail in Dally (1987). Example results for the marginal pdf(R) are 
displayed in Figures 3a, 3b, and 4. Note that in Figure 3 the closed 
form solution for breaking on the 1/20 slope has been smoothed, and that 
the discontinuity at the upper bound of the pdf has been eliminated. 
For mild beach slopes, the anomaly in the lower range of values for 
breaking waves displayed by the first model (Figure 2a) still exists as 
shown in Figure 4 for a beach slope of 1/80. 

To test the sensitivity of the model to the expression chosen to 
dictate incipient breaking, that given by Singamsetti and Wind (1980), 

. .n, H -0.237 
y  = 0.568 m0'107^) (43) 

o 

is also applied and results for the same conditions as Figure 3a are 
displayed in Figure 5. This breaker criterion allows more range in 
values of y than (13), perhaps more than is actually found in nature and 
in fact has no upper limit. This is responsible for the broad and flat 
shape of the pdf for broken waves, and the upper tail of the pdf for 
shoaling waves as compared to Figure 3a. 

Discussion and Conclusions 

Due to space limitations, direct comparison of the models to 
observed histograms cannot be presented here. However, in Dally (1988) 
solution #1 is compared to the field data of Ebersole and Hughes (1987), 
while Dally and Dean (1986) and Dally (1987), applying to complex topog- 
raphy the same formulation as developed for solution #2, compared direct 
numerical solutions to the field data of Hotta and Mizuguchi (1980, 
1986). The model comparisons are quite reasonable, and faithfully rep- 
resent major features of the shape of observed histograms as the surf 
zone is traversed. As hoped, allowing for a variation in y in solution 
#2 does improve agreement, especially across the range of higher wave 
heights. As previously noted, the models do tend to overpredict meas- 
ured values near the mean wave height for mild beach slopes - behavior 
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most likely due to neglecting surf beat. Comparison of the transforma- 
tion of statistically representative waves Hrms, H1/3 and H^/io 

as 

predicted by the second formulation are also In good agreement with data 
from Hotta and Mizuguchi (1980, 1986). 

The degree to which the closed-form solutions represent random wave 
transformation is directly attributed to the ability of the regular wave 
model (8) to predict breaking of individual waves. It is stressed that 
favorable results have been obtained without altering the original cali- 
bration of the regular wave model. Because the effect of beach slope 
and wave steepness on wave height decay appears to be well represented 
in the regular wave model (see Dally et al., 1985), the ability of the 
random wave models to predict the effect of these parameters on the 
behavior of the pdf is significantly enhanced. This also holds true for 
the behavior of statistically representative waves calculated using 
solution #1 as pursued in Dally (1988). The closed-form nature of the 
solutions intrinsically identifies the dimensionless parameters govern- 
ing the problem, and allows the predicted response to them to be more 
easily examined. For example, intercomparison of Figures 2a, b and c 
clearly shows the effect of beach slope, while 4a and b display the 
effects of meanwave steepness, with all other parameters held constant. 
Although in solution #2 numerical quadrature is required to determine 
the marginal pdf, (28) and (42) are in closed form, and could be 
utilized as a starting point for stochastic treatment of other surf zone 
problems. 

Numerical studies reported in Dally and Dean (1986) and Dally 
(1987) indicate that comparisons of the model to field data are improved 
when the formulation includes 1) non-linear effects in wave shoaling, 
and 2) the effects of the fluctuating mean water level and oscillatory 
current associated with surf beat. However, a closed-form solution that 
includes these effects has thus far been elusive. 
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