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Solitary waves passing over submerged breakwaters 

Mark Cooker * 
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Abstract: 
A method is described for the computation of the two-dimensional 

unsteady motion of a solitary wave passing over submerged breakwaters. 
Far from the breakwater the fluid is assumed static and the sea bed is 
level. The fluid motion is assumed to be irrotational, incompressible 
and inviscid. The exact boundary conditions at the free surface and 
the impermeable bed are satisfied. Laplace's equation for the velocity 
potential is solved using a boundary integral method. 

Numerical results are reported which show the variety of ways in 
which solitary waves are distorted when they encounter submerged break- 
waters . 

This work is part of a program of study to provide more understand- 
ing of the hydrodynamics of steep waves when they encounter coastal 
structures. We have developed a computer program which models the 
motion of waves in 2D, irrotational, inviscid flows. The method is not 
restricted to any particular free surface motion but we choose here to 
examine solitary waves. This class of waves includes the largest 2D 
irrotational, inviscid wave which can steadily propagate on a fixed 
depth. Solitary waves are everywhere elevated above the undisturbed 
water level, so it was thought likely that these model the waves most 
damaging to structures. We can accurately reproduce solitary waves with 
heights up to 96%  of the highest wave. 

The numerical method employs a boundary integral technique to solve 
Laplace's equation for the velocity potential. Bernoulli's equation is 
used as one boundary condition at the free surface. We ignore surface 
tension, and take the atmospheric pressure above the liquid surface to 
be constant. The second boundary condition is to assume that fluid 
particles on the free surface stay on the surface. All rigid boundar- 
ies are assumed to be impermeable. Details of the method are given by 
Dold & Peregrine (1986). 

The method is accurate, stable and efficient. A solitary wave of 
height 0.5 of the depth can propagate over a horizontal distance of SO 
depths with less than 0.1$ change in height. The method does not 
suffer from "sawtooth" instabilities. 

The program can be run on an IBM-compatible AT personal computer: 
in 60 minutes elapsed time we can calculate the motion of a wave pass- 
ing over a breakwater. 

The method also uses conformal mappings to transform flow domains 
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with irregular beds into regions with a flat horizontal bed. This is 
done to make Laplace's equation easier to solve. For the examples 
used here the conformal mapping has a bottom comprising a semicircle 
(radius R) on an otherwise flat horizontal bed. See figure 1. 

The solitary wave is started with its crest far enough from the 
semicircle for the wave to be unaffected by it in the first few time 
steps. The wave moves left towards the cylinder. The initial data 
describing an incident solitary wave is calculated using the method of 
Tanaka (1986). 

<— 

Figure 1 : Solitary wave approaching submerged semicircular break- 
water . 

Let the undisturbed fluid depth h = 1. Then H, the incident wave 
height, and cylinder radius R, are dimensionless parameters. The H - R 
parameter space is surprisingly rich: see figure 2. We expected all 
waves to steepen and break on the cylinder, but this only happens for 
the largest waves (H > 0.6) and the largest cylinders (R > 0.8) and 
even these extreme waves tend to break downstream of the breakwater. 

Small cylinders (R < 0.3) cause very large, linearly unstable 
waves (H > 0.8) to eventually break, long after they have passed over 
the breakwater. See figure 3. Tanaka et al. (1987) show that unstable 
solitary waves do not necessarily break. The growth in time of the 
breakwater instability closely follows that discussed by Tanaka et al. 
(1987). Waves with height H< 0.77 develop a train of small dispersive 
waves in their wake, after they have passed over the breakwater when 
R< 0.4 . See figure 4. 

A very common but unexpected phenomenon occurs for many waves for 
cylinders with radius in the range 0.5 to 0.9 . As the wave approaches 
the cylinder a second crest grows on the opposite side of the obstacle. 
The second crest grows and soon dominates the first which meanwhile 
decays. The new crest propagates away from the cylinder. This 
exchange of crests across the cylinder is reminiscent of a large soli- 
tary wave catching up a smaller one. See figure 5. 

Most surprising of all are those waves of height between 0.3 and 
0.6, passing over cylinders of radius 0.7 to 0.9 . The wave passes 
over the breakwater and having cleared it a second, stationary wave 
forms above the left-hand margin of the breakwater. This second wave 
steepens enough to break over backwards, onto the cylinder. See figure 
6. 

For the example shown in figure 6 if we increase R from 0.7 to 
0.8 the transmitted wave breaks forward before the second waves breaks 
backward. See figure 7. We are unable to continue the computations 
beyond the time at which a wave breaks, but experiments have indicated 
that breaking can occur for both of the waves. The breaking is simul- 
taneous when RO.77 for H = 0.58 . 

Wave tank experiments at Santander University in Spain by Cezar 
Vidal confirm the backwards breaker. Some measurements of depth as a 
function of time, at fixed stations, also agree well with prediction. 

Figure 6 also illustrates the instantaneous streamlines of the 
flow. The pressure contours can. also be found and the total force on 
the cylinder determined. For example when H = 0.8 and R = 0.9 
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the wave breaks on top of the cylinder. See figures 8 and 9. The hor- 
izontal and vertical components of hydrodynamic force on the breakwater 
as the wave approaches are plotted in figure 10. The maximum horizontal 
component of force occurs during the wave's approach and well before 
breaking. Both of the maxima in horizontal and vertical components of 
force are about as large as the hydrostatic force. 

This shows how waves can exert large dynamical forces on sub- 
merged coastal structures. 

Figures 11 and 12 show a sequence of profiles of a solitary wave 
of height 0.8 breaking on a shoal of elliptical profile. The bed is 
reminiscent of a gently shelving beach and our method has predicted the 
classical plunging breaker. The pressure distribution is plotted in 
figure 13, at a time soon after the front face of the wave has become 
vertical. The large pressure gradients normal to the front face of 
the wave and parallel to the bed remind us of the strength of the sea. 
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Figure 2 : B: Breaking at cylinder. B B: Backward breaking. 
C-C: Crest interchange across cylinder. F B: Forward breaking. 
T: Tanaka-type instability. W T: Wave tram behind transmitted wave. 
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Figure 3: H = 0.8, R = 0.3. Breaking far downstream of cylinder. Natural scaling. 
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Figure 4: H = 0.6, R = 0.5. Dispersive waves trailing transmitted wave. Note right- 
travelling reflected waves. Vertical exaggeration = 40. 
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Figure 5: H = 0.22, R = 0.7. Exchange of crests across breakwater. Times 9, 9.2, 
... 9.6. Natural scaling. 
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Figure 6: The backwards breaker for H = 0.46 and R = 0.7. The instantaneous stream- 
lines are also shown. Natural scaling. 
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Figure 7: H = 0.46, R = 0.8. Wave breaks forward, downstream of cylinder. Times 
0, 1, ..., 7. 
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Figure 8: H = 0.8, R = 0.9. Instantaneous streamlines. Natural scaling 
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Figure 9: H = 0.8, R = 0.9. Pressure contours. Natural scaling 
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Figure 10: The dynamic force on a cylinder H = 0.8, R = 0.9. Times 0, 0.5, 
4.5. 
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Figure 11: Wave breaking on an elliptical shoal where minimum depth is 0.1, H 
0.8. Times 4, 5, 6, 7, 8. Natural scaling. 
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Figure 12: H = 0.8. Elliptical shoal. Times 8.0, 8.1, ..., 8.5. Natural scaling. Con- 
tinuation of figure 11. 

-11.2     -11.0'     -ID. 8     -10. 6     -ID. 4     -10.2     -10.0     -9.8        -8.6'       -9.4        -9.2 

Figure 13: As figure 11. Pressure contours at time 7.5. Natural scaling. 




