
CHAPTER 36 

PROPAGATION OF WIND WAVES ON TIDES 

abstract 

Effects of instationary depths and currents in tides on shelf seas 
on wind wave propagation are investigated using two numerical models in 
two academical situations representing shelf sea conditions. It is 
shown that changes in absolute frequency, which are induced by the 
instationarity of depth and current, are significant in contrast to 
what is usually assumed. If these changes are neglected large and 
unpredictable errors may occur in calculated changes of wavenumber and 
amplitude. 

INTRODUCTION 

In the present study the influence of instationary depths and 
currents on wind generated surface gravity waves, in particular on 
their propagation, is investigated. 

Instationary depths and currents occur when the travel time of waves 
through some area is of the same order of magnitude as the time scale 
of the variations in the depth and current field or larger. This is for 
instance the case for wind waves traveling on tides in shelf seas such 
as the North Sea. The potential importance of wave-current interactions 
in such instationary conditions can be illustrated with a measured 
modulation of significant wave height in the southern North Sea (figure 
1), which has the same period as the tide. Since the tidal range is 
only about 5% of the average depth, current variations (in space and 
time) rather than depth variations are expected to be responsible for 
the observed wave height modulations of up to 50 %. 

Interactions between waves and currents, in particular the influence 
of currents on waves, have been studied extensively in the last 
decades. The importance of these interactions is generally recognized 
and the subject is treated in many textbooks, e.g. Whitham (1974), 
Phillips (1977), Mei (1983), review papers, e.g. Peregrine (1976) and 
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reports, e.g. Peregrine and Jonsson (1983). However, wave-current 
interactions are usually considered in small scale (coastal) areas 
where depths and currents are treated as non-homogeneous and station- 
ary. In such cases the absolute frequency u of a periodic wave remains 
constant in space and time. This implies that the number of incoming 
waves equals the number of outgoing waves (per unit time) for a fixed 
area. This invariance of absolute frequency is exploited in numerical 
wave propagation models for stationary depths and currents, e.g. Tayfun 
et al. (1976) and in calculations of spectral wave transformations due 
to stationary currents, e.g. Hedges et al. (1985). 

In instationary conditions the absolute frequency does not remain 
constant during propagation as indicated by theory (e.g. Whitham, 1974, 
his page 383) and observations (Barber, 1949). The governing equations 
are well known (e.g. Whitham (1974), Mei (1983)). Nevertheless, a 
constant absolute frequency has been assumed in several models for 
large scale (and therefore usually instationary) depth and current 
fields, e.g. Burrows and Hedges (1985), even when it is stated explic- 
itly that depth and current are instationary, e.g Chen and Wang (1983). 
Although the subject of instationary wave-current interactions is 
properly treated in several other publications, e.g. Unna (1941), 
Barber (1949), Longuet-Higgins and Stewart (1960) and Christoffersen 
(1982), none of these papers deals explicitly with the influence of the 
change of absolute frequency on wave-current interactions. 

In the present paper the equations for wave propagation on insta- 
tionary depths and currents and the corresponding changes in wave 
parameters are summarized. Furthermore interactions are calculated for 
two academic cases using numerical models. To illustrate the effects of 
instationarity of depth and current, in particular the change of 
absolute frequency, calculations are performed for monochromatic waves 
in a simple one-dimensional geometry. To illustrate such effects in a 
more realistic situation, calculations are performed for irregular 
waves in a more complex two-dimensional geometry. For the latter 
calculations a discrete spectral two-dimensional wave propagation model 
is used. 

HsO) 

Fig. 1 Measured significant wave heights Hs at the southern North 
Sea, platform Euro-0, 50 km west of the entrance to the port 
of Rotterdam, water depth 26 m. Illustration provided by the 
Ministry of Public Works and Transportation, The Netherlands. 
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WAVE PROPAGATION ON INSTATIONARY MEDIA 

To describe variations in waves due to variations in currents and 
depths, linear surface gravity waves propagating on a two-dimensional 
instationary and inhomogeneous depth and current field are considered. 
Waves are in general characterized with wavenumber (k), absolute 
frequency (OJ), direction (9) and some amplitude parameter. For mono- 
chromatic waves this is the amplitude (a) of the harmonic wave and for 
short-crested irregular waves this is a two-dimensional spectrum, e.g. 
the action density spectrum N as a function of u and 6 . If waves on 
currents are considered, it is convenient to make a distinction between 
a frame of reference fixed to the bottom, in which the wave frequency 
is the absolute frequency u , and a frame of reference moving with the 
local current velocity U_, in which the wave frequency is the intrinsic 
frequency a . The absolute frequency to , the intrinsic frequency a and 
the wavenumber k are interrelated by the Doppler equation (1) and the 
dispersion relation (2), 

a) = a + k.U (1) 

a = { gk tanh(kd) } 5 (2) 

where k_ is the wavenumber vector, defined by k and 8, g is the acceler- 
ation of gravity and d is the water depth. 

In the following a Lagrangian viewpoint is taken in which wave 
energy is followed during propagation. In a frame of reference moving 
with the local current velocity U_ the propagation velocity of wave 
energy Cg (direction 6) is given by the linear theory as : 

(3) 

(4) 

In the fixed frame the propagation velocity of the energy (c^,) is (e.g. 
Phillips, 1977) : 

£w = £g + U_ (5) 

The corresponding rates of change in absolute frequency u , intrinsic 
frequency a, wavenumber k and direction 6 (denoted as du/dt, da/dt, 
dk/dt and d9/dt respectively) can be determined using equations (1), 
(2) and the conservation of waves 3k/st + 3co/3x = 0 (e.g. Whitham 
(1974), his page 11). These rates of change are (e.g. Christoffersen 
(1982), Mei (1983), his page 96) : 
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lich s is a coordinate : in  the  di .rection 6 ,   m  a  coordinate  perpen- 
dicular to s and V the differential operator in space. The operator 
d/dt is defined as : 

d      3 
  =   + c„.V (10) 
dt     3t 

The calculation of wave amplitudes for propagation over currents in 
absence of energy sources and sinks (wave generation and dissipation 
e.g. by wind) is based on the conservation of action (e.g. Whitham 
1974, Phillips, 1977). The formulation of the action conservation for 
monochromatic waves differs from that for irregular waves. For mono- 
chromatic waves the (Eulerian) action conservation equation is written 
as : 

3A 
  + V.(c„A) = 0 (11) 
St 

where wave action density A is related to energy density E and ampli- 
tude a : 

A = E/o (12) 

E = ipga2 (13) 

For short-crested irregular waves the action conservation equation 
is written as : 

SN 3 3 

  + V.(c„N) +   (c„N) +   (c N) = 0 (14) 
3t 36   °     3U 

where the action density spectrum N(a),9) (action per unit surface, 
frequency and direction) is related to the energy density spectrum 
F(to,6) : 

N(u,e) = F(uj,e) la (15) 

As amplitude parameter of the irregular waves the significant wave 
height Hs is used, which is calculated from the energy density spec- 
trum as 

Hs = 4.0 ( ff   F(w, 9) dw de )* / pg (16) 
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The first term in equation (14) represents the local variation in 
time, which is balanced by the other terms which represent different 
forms of convection. The first of these represents convection in space 
(including shoaling), where c^, is given as in equation (5). It corre- 
sponds to the second term in equation (11) for monochromatic waves. The 
third term in equation (14) represents refraction where CQ equals de/dt 
as given in equation (9). These first three terms are quite common for 
models which consider only stationary propagation conditions. The 
fourth term is unique for instationary depths and currents. It repre- 
sents transport of action over the spectral frequencies, which corre- 
sponds to the change of absolute frequency in a monochromatic case. Its 
formulation is analogous to the above spectral representation of 
refraction, where the change of wave direction is represented by 
transport of action over the spectral directions. The propagation 
velocity c equals dio/dt as given in equation (6). 

Based on equation (6), which is formulated in terms of time deriva- 
tives, the importance of the instationarity can be expressed in terms 
of the (relative) change of absolute frequency Aw/io. Likewise, the 
importance of the inhomogeneity can be expressed in the (relative) 
change of wavenumber Ak/k, based on equation (7). The ratio between the 
relative change in absolute frequency Au/io and the relative change in 
wavenumber Ak/k can therefore be used to assess the importance of the 
instationarity compared to the importance of the inhomogeneity. 

MONOCHROMATIC ONE-DIMENSIONAL SITUATION 

To illustrate the influence of instationary depth and current 
variations on waves, consider monochromatic waves in a one-dimensional 
geometry. The current field (representing a tide) consists of a one- 
dimensional long wave over a constant bottom level. The tide propagates 
in the positive x-direction and its characteristics are described as : 

d(x,t) = d0 + Ad sin x(x,t) (17) 

U(x,t) = AW sin x(x,t) (18) 

X(x,t) = Kx - at (19) 

ct = fl/K = (gd0)* (20) 

AuMd = (g/d0)
5 (21) 

In these equations x is the tidal phase, c^ is the propagation velocity 
of the tide, K and S are the wavenumber and frequency of tide and Ay ad 
A(j are the current and depth amplitude respectively (current velocity 
constant over depth). 

The calculations for the above situation are carried out as follows. 
Absolute frequency 10 as a function of x and t is calculated by simula- 
taneous integration of dx/dt = cw and du/dt as given by (6), starting 
at a situation with x = 0 (no current, suffix o). Using io , d and U the 
parameters needed for this integration (k and c„) can be calculated 
using equations (1) through (4). As it can be shown that for the 
considered situation u , k, A etc. vary with x and t through x °nly> 
action density A is stationary in a frame of reference which moves with 
the propagation velocity of the tide c^. Using this property, the 
action conservation equation (11) can be rewritten as : 
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  ( (cw-ct) A ) = 0 
8x 

(22) 

so that the relative action density A/A0 can be calculated as 

A     cw>0 - ct 

cw - ct 
(23) 

The wave energy and amplitude are subsequently calculated from the 
relative action density using equations (23), (12) and (13). 

Figure 2 (solid lines) shows the results of calculations for 
conditions roughly representing the M2 tide in the southern North Sea 
(oo0 = 2 ir/10 rad/s, period of the tide = 12 h, d0 = 25 m, A,j = 1 m 
resulting in A\] = 0.63 m/s). Calculated values of wave parameters are 
basically a function of the phasex of the tide, but they are presented 
in figure 2 as they appear at a fixed location as a function of time. 
This transformation from phase x to time t is easily performed using 
equations (19) and (20). This figure shows variations in the normalized 
absolute frequency (co/oo0) which cannot be neglected compared to 
variations in the normalized wavenumber (k/k0). Consequently both 
instationarity and inhomogeneity are important for the siuation 
considered. Similar results were obtained for tide and waves traveling 
in opposite directions and for other depths, wave frequencies and depth 
and current oscillation amplitudes. 

If the change in absolute frequency is neglected (dw/dt = 0, dashed 
lines in figure 2), large errors in calculated wavenumbers and ampli- 
tudes occur. If tide and waves travel in opposite directions (cj~ and cw 
with opposite signs, not shown here), such an approach overestimates 
the change of wavenumber by a factor of 2 or more. For tide and waves 
traveling in the same direction (figure 2) the situation is even worse 
as the predicted sign of the variation of the wavenumber is always 
wrong; the thus predicted variation of the amplitude also shows large 
errors which can include wrong signs. 

a/a„ 

\ /   N 

>^^ 
"""• — "' 

c) 

2h    0 

Fig. 2 Results of calculations with simple one-dimensional model for 
monochromatic waves, tidal period 12 h, u0 = 2n/10 rad/s, 

25 A(j = 1 m and Ay = 0.63 m/s du/dt given 
by equation 6, - - - dto/dt = 0 a) normalized absolute 
frequency u>/u>0 b) normalized wavenumber k/k0 c) normalized 
amplitude a/a0. 
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SPECTRAL TWO-DIMENSIONAL SITUATION 

Wave-current interactions in more realistic situations should be 
determined using a spectral approach based on equation (14). In the 
following the spectral development of a wave field is calculated using 
a numerical model in which equation (14) is approximated using a finite 
difference approach. The model will be described elsewhere. It suffices 
to say that it is approximately second order accurate in all five 
dimensions (x_, ID , 6 , t). 

Again a situation is considered which roughly represents the M2 tide 
in the North Sea (figure 3). The area (500x750 km^) is discretized 
using a square grid with spatial increments of 25 km. The action 
density spectrum is discretized with 24 directions (directional 
increment 15°) and 18 frequencies ranging from 0.05 Hz to 0.30 Hz 
(exponential distribution). The time step in the integration is 15 min. 
Current and depth fields are calculated using a two-dimensional depth 
integrated current model, which includes Coriolis forces (Coriolis 
parameter constant as for 53 N) and bottom friction (Chezy coefficient 
C = 181og(-120 d0)). A periodic surface elevation with amplitude of 
0.25 m and a period of 12 h was applied to the open boundary to 

-t- 
750 km 

closed  bound 

n 25 km x 25 km 

ottom profile 
(distorted scale) 

Fig.   3    Layout   of   academical   shelf   sea  as   used   in   the   spectral   two- 
dimensional calculations 
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simulate the M2 tide. The resulting tide travels counterclockwise 
through the area considered with resulting maximum current velocities 
as shown in figure A. A stationary energy density spectrum was imposed 
at the open boundary. The mean wave direction is perpendicular to the 
boundary. The spectral shape is that of a Gaussian distribution over 
the frequencies and cos^(g) over the directions (average frequency 
0.1 Hz, frequency spread 0.015 Hz). After a few days of simulation 
depth, current and wave spectra are periodic with an oscillation period 
of 12 hours. All results presented next refer to the periodic solution. 

Figure 5 shows the spatial distribution of the range of local 
variation in time of some spectral parameters (e.g. Hs max - Hs min). 
These parameter values are normalized with their local value averaged 
over the tidal period (suffix a, e.g. Hs a). Presented are : a) mean 
absolute frequency defined as 

If  ID F(M,e) dude 

// F(u,e) dude 
(24) 

b) mean wavenumber, defined as 

// k F((D,9) dude 

IS  F((u,e) dude 
(25) 

and c) significant wave height, see equation (16). 

To illustrate the behaviour in time of several wave parameters and 
the nature of the errors which are made if the change in absolute 
frequency is neglected, results are given in figure 6 for three 
locations in the area with large variations in wave parameters (figures 
3 and 5). They have been selected to illustrate the phase lags between 
the local current velocity and e.g. the variation of wavenumber. These 
lags vary with location, which indicates that it is a cumulative 
effect, not a local one. 

Essentially the above calculations with the two-dimensional model 
have to be repeated with du/dt = 0 to determine the errors then made. 

Fig. 4 Maximum current velocities of M2 tide in shelf sea of fig. 3. 
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Fig. 5 Normalized ranges of variation of a) absolute frequency u/<oa 
b) wavenumber k/ka and c) significant wave height Hs/Hs a for 
spectral two-dimensional calculations (distribution over area 
of figure 3). 
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As these calculations are quite expensive (approximately 1.5 hours CPU 
time on an IBM 3083-JX1) they have not been performed. However, the 
mean absolute frequency now (approximately) equals the stationary mean 
absolute frequency at the input boundary w^,. Furthermore the (input) 
spectrum is extremely narrow banded and can therefore be described with 
a single wavenumber ¥ and frequency tJ3" which approximately satisfy 
equations (1) and (2). Thus the wavenumber as obtained when the 
absolute frequency is assumed to be constant can _be estimated using 
equations (1) and (2) with to" = CT^, k = k and k_.U_ = kU' where U' is the 
current velocity in the mean propagation direction of the waves. For 
the calculation of action density and significant waveheight, which 
includes integrating equation (14), no simple approximation is availa- 
ble. The solid lines in figure 6 represent results of the two-dimen- 
sional calculations (including frequency shifts) and the dashed lines 
represent the approximate solutions as obtained when the change in 
absolute frequency is neglected. 

Point C 

Fig. 6 Parameter values for points A, B, and C of figure 3 as a 
function of time,   dio/dt according to equation 6 (in- 
stationary), - - - du/dt = 0 (quasi-stationary) : a) Current 
velocity in propagation direction of waves U', b) normalized 
absolute frequency &)/ioa and c) normalized wavenumber k/ka. 
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DISCUSSION 

The results of calculations for monochromatic waves in the one- 
dimensional case (figure 2) clearly show the influence of instation- 
arity of depth and current on changes in absolute frequency, wavenumber 
and wave amplitude. In particular the change in absolute frequency is 
significant. Its normalized change is of the same order of magnitude as 
the normalized change in wavenumber or larger. This indicates that in 
this case instationarity is at least as important as inhomogeneity. 

The results of calculations with the spectral two-dimensional wave 
propagation model for the academical shelf sea of figure 3 confirm 
these findings. Figure 5 a) shows that variations in absolute frequency 
are not negligible, specially in shallow water areas with relatively 
strong currents (see figure 4). Again normalized changes of absolute 
frequency (figure 5a) are of the same order of magnitude as normalized 
changes of wavenumber (figure 5b), indicating the importance of 
instationarity. Finally variations in significant wave height (figure 
5c) are significant. 

If the absolute frequency is assumed to be constant (dra/dt = 0), 
large errors occur in the predicted change of wavenumber, both in the 
one- and two-dimensional situations considered. Similar errors are 
expected to occur for the significant waveheight in the two-dimensional 
situation. They do occur for the change of amplitude in the one- 
dimensional situation. Unfortunately such errors cannot be estimated 
from calculations based on the assumption of constant absolute fre- 
quency, as will be shown next. In instationary conditions the change of 
wave parameters depends on the (local) change of absolute frequency. 
This change in turn depends on depth and current conditions along the 
propagation path of the wave energy. Due to these accumulated effects 
the local current is not correlated with the local wave parameters such 
as the wavenumber (see solid lines of figure 6 a and c). If the shift 
in absolute frequency is neglected, the cumulative effects dissapear 
and the local current and variations in e.g. wavenumber depend on local 
parameters only (see dashed lines in figure 6c). As the cumulative 
effects can usually not be estimated from local parameters only, errors 
thus made cannot be estimated. 

Wave-current interactions not only affect propagation but also 
generation and dissipation. Therefore work is in progress to add these 
interactions to the above two-dimensional model. This model will be 
used to determine the influence of tide and storm surge induced wave- 
current interactions in the North sea. A description of this model and 
results of this continued effort will be published elsewhere. 

CONCLUSIONS 

In this study it is shown that instationary depth and current fields 
such as tides in shelf seas induce significant variations of the 
absolute frequency of (wind) waves. These variations are not only 
induced by local depth and current variations but also by the structure 
of the depth and current field in space and time. The commonly used 
quasi-stationary approach, in which the absolute frequency is assumed 
to remain constant during propagation, can lead to significant errors 
in the calculated variations in wavenumber and amplitude at least for 
the fairly typical shelf sea conditions considered in this study. 
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