
CHAPTER 35 

Subgrid Modelling in Depth Integrated Flows 

by 

P.A. Madsen, M. Rugbjerg and I.R. Warren 

Introduction 

Hydrodynamic simulations in coastal engineering studies 
are still most commonly carried out using two-dimensional 
vertically integrated mathematical models. As yet, three- 
dimensional models are too expensive to be put into gene- 
ral use. However, the tendency with 2-D models is to use 
finer and finer resolution so that it becomes necessary to 
include approximations to some 3-D phenomena. 

It has been shown by many authors that simulations of 
large scale eddies can be quite realistic in 2-D models 
(c.f. Abbott et al. 1985). 

Basically there exists two different mechanisms of cir- 
culation generation. The first one is based on a balance 
between horizontally and grid-resolved momentum transfers 
and the bed resistance - i.e. a balance between the con- 
vective momentum terms and the bottom shear stress. 

The second one is due to momentum transfers that are 
not resolved at the grid scale but appears instead as ho- 
rizontally distributed shear stresses. 

In many practical situations the circulations will be 
governed by the first mechanism. 

This is the case if the diameter of the circulation and 
the grid size is much larger than the water depth. In this 
situation the eddies are friction dominated so that the 
effect of sub-grid eddy viscosity is limited. 

In this case 2-D models are known to produce very rea- 
listic results and several comparisons with measurements 
have been reported in the literature. 

However, when AxSh then the eddy viscosity becomes the 
most important parameter determining the flow pattern. In 
this case the modelling operation must proceed more cau- 
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tiously and a proper closure of the equations must be made 
in order to describe the effective shear stresses in the 
momentum equations. 

Effective Stresses 

The effective stresses arise in the momentum equations 
via various filtering processes. 

The commonly recognized filtering processes are: 

Scale 1: 
Filter out the 
random molecular 
motion 

molecular diffusion 
viscosity 

Scale 2: 
Filter out the 
turbulent motion 
below a given scale 

Scale 3: 
Depth averaging to 
filter out the 
vertical velocity 
profile for 
2-D models 

->•    turbulent diffusion 
->• eddy-viscosity 

dispersion 
bed & surface shear 
stresses 
horizontal ("effective") 
shear stresses 

It is generally accepted that the eddy terms due to the 
processes at scale 1 and 2 are negligible relative to 
scale 3. The effect of the depth-averaging of the velocity 
profile was taken care of by Elder (1959) who used a loga- 
rithmic profile to derive the following expression for the 
eddy viscosity, 

K •h«u* v 
s 6 

where 

/—  u chezy number 

However, field measurements and modelling generally 
show that Elder's coefficient is several orders of magni- 
tude too small. This is illustrated by table 1 in which 
calibrated eddy coefficients are compared to Elder's ex- 
pression for 4 different model applications. 

Case h u u* Ax At E calib. 6-hu* 
m m/s m/s m s m2 /s m2 /s 

A 8 0.7 0.05 50 30 2-5 2.4 
B 20 1.0 0.1 500 300 40-50 12 
C 30 0.5 0.03 6000 600 s500 5.4 
D 1000 0.1 0.003 30000 900 >6000 18 

Table 1 Comparison between Elder's eddy coefficient and 
calibrated coefficients. 
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In most classical texts, the development of the equa- 
tions for nearly-horizontal flow stop at scale 3. However 
it turns out that for application to numerical modelling 
it is necessary to extend the filtering process to scale 
4, that of the model resolution: 

Scale 4: 
Horizontal averaging 
over the model grid 
size Ax 

-*•     additional dispersion 
-*• additional eddy 

When Ax and h are of the same order of magnitude then 
the processes at both scales 3 and 4 must be considered. 

Many modellers attempt to account for the processes at 
scale 4 by increasing the coefficient, K , in Elder's for- 
mular, K  hu*, but this is a mistake. 

Since the purpose of the eddy viscosity is to represent 
sub-grid processes it is natural to relate the length 
scale to Ax and the time scale to At. Hence the eddy vis- 
cosity at scale 4 could be considered in one of the fol- 
lowing forms: 

Ax 
At K_> Ax-u K--At-U 

In table 2 the 3 different forms of the eddy viscosity 
for scale 4 have been compared to calibrated results in 5 
different situations. 

Case h u Ax At E  . 
cal. Kl K2 K3 

(m) (m/s) (m) (S) (m2/s) 

A 8 0.7 50 30 1-5 0.06-0.01 0.14-0.03 0.34-0.07 
B 20 1.0 500 300 40-50 0.06 0.10 0.17 
C 30 0.5 6000 600 £500 0.008 0.17 3.3 
D 40 1.0 20 10 1-3 0.075-0.025 0.15-0.05 0.30-0.10 
E 1000 0.1 30000 900 S6000 0.006 2.0 667 

Table 2 Eddy coefficients of scale 4. 

The form K.-A-u appears to be promising since K_ 
almost constant in the 5 different cases. 

A   more advanced approach is the Smagorinski type of 
eddy viscosity which depends on horizontal gradients of 
the depth-averaged flow velocity. This approach will be 
introduced in the following section. 

Smagorinski Eddy Viscosity 

The Smagorinsky sub-grid model has been widely used and 
is generally believed to be correct for homogeneous, 
isotropic turbulence. Various authors have extended this 
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model to inhomogeneous or anisotropic turbulence, e.g. 
close to a wall (Schuman, 1975) and to the viscous sub- 
layer in the boundary layer (Moin and Kim 1982) . 

The flow equation after filtering out turbulence below 
the scale A, is commonly written 

u. 
 l 
3t 3x. 

1 
I |2_+ F. +  3 (E.s..) p 3x.    l   3x .    11 

J- 3 

where i, j = 1, 2, 3 

u = filtered velocity vector 
P = pressure 
F. = body forces 
E1 = turbulent eddy viscosity 

1     3ui   3u. 
Sij = 2 (3x7 + 3x.> 

(2) 

The Smagorinsky sub-grid eddy viscosity takes on the 
form (cf. Leslie, 1982) 

E = 12(S. .S. .)* 
ID Di 

The mixing length Ji, is determined by 

(3) 

a  = c -Ax s (4) 

It has been shown by Lilly (1965) and Leonard (1974) 
that the resultant energy cascade i.e. the dissipation of 
the large scales is consistent with the Kolmogorov power 
spectrum and the constant C is dependent only on Kolmo- 
gorov's universal constant.s Lilly (1965) used the value 
C  = 0.1825. s 

In order to extend the Smagorinsky model to 2-D free 
surface flow, it is necessary to integrate the flow equa- 
tions over the vertical. 

By analogy to the 3-D form we get, 

2-D modelling: 

3U 
3t 3x(E 3F + 2 3^(E(37 + 37" (5) 

where 

E = 1' (is,2 + (1Y, 
2 

l
3x'    l3y' 

+ I (IS + 3V," 
2 l3y   3x' (6) 

i.e. the local velocities have simply been replaced by the 
depth-averaged velocities U and V. 
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The mixing length is still determined from Eq. (4) but 
it must be expected that the value of the empirical con- 
stant C will differ from the values established in 3-D 
modelling. From the first applications of the model it 
appears that C should be found in the interval 0.4 to 
0.8. s 

Results 

Some results from the application of the model to 
Haraldsund in the Faroe Islands are shown in Figs. 1 and 
2. Water depths in the area are up to 60 m while the grid 
size is only 20 m, so it is certain that bed friction is 
not the governing factor in the size and intensity of the 
eddies produced by the model. In such a case, dispersive 
terms such as those introduced by eddy viscosity should be 
necessary to produce a realistic flow pattern and have a 
major effect on the eddies, as is seen in Figs. 1 and 2. 

2    4    6    8   10 12 14 16 18 20 22 24 26 28 30 32 34 

10 12 14 16 18 20 22 24 26 28 30 32 34 
Grid Spacings (20 m) 

Fig. 1  No eddy viscosity. 
Manning Number = 32. 
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With Zero eddy viscosity a quite unrealistic flow pat- 
tern is produced. Fig. 1. In Fig. 2, the results at the 
same time with C  =0.75 are much more plausable. 

s c 

2 
With C = 0.75, eddy viscosities of 1-2 m /s were com- 

puted by the Smagorinsky model in regions of maximum velo- 
city gradient, and these are of the correct order of mag- 
nitude. Finally, it is reported that the results were very 
sensitive to the value of C . In this and other studies, 
it seems that C = 0.40 tos 0.80 produces realistic re- 
sults . s 
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Fig. 2  Smagorinsky eddy, C 
Manning Number = 32? 

0.75. 
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