
CHAPTER 27 

Numerical Modeling of Wave Deformation with a Current 

Susumu OHNAKA*, Akira WATANABE** and Masahiko ISOBE*** 

ABSTRACT 

A numerical computation method for a wave field coexisting with a 
current is presented to study wave-current interaction on a slowly varying 
bottom topography. Derivation is given for a new set of time-dependent mild- 
slope equations extended to a wave and current coexisting field, which can 
deal with wave deformation due to combined refraction, diffraction, reflection 
and breaking as well as to wave-current interaction. Discussion is made on 
the numerical computation schemes, boundary conditions and breaking 
conditions. Some examples of the numerical computations are shown for 
wave and current coexisting fields. 

1.    INTRODUCTION 

Many efforts have been devoted to the evaluation of wave deformation 
in the shallow water region with numerical models. The mild-slope equation 
has been presented and used by Berkhoff (1972) to study combined wave 
refraction and diffraction on a slowly varying bottom topography. Watanabe 
and Maruyama (1986) have proposed a time-dependent version of the mild- 
slope equation, which can be more easily solved numerically and can deal 
with not only the combined refraction, diffraction and reflection but also wave 
breaking and decay in the surf zone. 

In these equations, however, wave-current interaction is ignored. 
Coastal and nearshore currents such as rip current, longshore current and 
river discharge flow affect the wave deformation and therefore it is important 
to estimate the wave-current interaction in order to accurately predict the 
nearshore waves and currents and the resultant sediment transport. 
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For a wave field coexisting with a varying current, three kinds of wave 
equations and models have been proposed by Booij (1981), Liu (1983) and 
Kirby (1984), respectively. All these three models employ elliptic-type 
differential equations which are in general difficult to numerically solve. 
Hence these models are often approximated by parabolic equations, and then 
they are not applicable to the wave field including significant reflection due to 
structures. 

In the present study, a new set of the time-dependent mild-slope 
equations extended to a wave and current coexisting field is derived and the 
numerical computation method is discussed. Some results of the computation 
are compared with analytical solutions and experimental results. The model 
is also applied to computing waves and currents under practical conditions 
including the presence of structures with consideration of the wave-current 
interaction. 

2.    DERIVATION OF GOVERNING EQUATIONS 

The mild-slope equation presented by Berkhoff (1972) is the second- 
order partial differential equation. On the other hand, the time-dependent 
mild-slope equations proposed by Watanabe and Maruyama (1986) consist of 
two first-order equations, which are obtained by separating the original mild- 
slope equation in terms of the water surface elevation and the flow rate. They 
also include a term for the energy dissipation due to breaking. The numerical 
computation is conducted for every time-step, and it is easy to deal with 
boundary conditions in general and to calculate local wave direction needed 
for introducing partially reflective boundaries and for solving the dispersion 
relation in a wave and current coexisting field. 

As mentioned before, three kinds of elliptic equations have been 
proposed for a wave and current coexisting field. Among them, the equation 
proposed by Kirby (1984), which exactly satisfies the conservation equation of 
wave action, is given by 

p2-f     +(V- v)-^— -V-(C-CgW<j>) + (<?-k2C-Cg)4> = 0 (1) 

where D I Dt = d I St + U • V, V is the horizontal gradient operator, $ the 
complex velocity potential at the mean water level, U the steady current 
velocity vector, o the intrinsic angular frequency, k the wave number vector, 
and € and Cg the phase and group velocity vectors calculated with a, which is 
determined from 

a = o + Ik • U, o2 = gk tank kh (2) 

where a is the apparent angular frequency, h the water depth, and g the 
acceleration due to gravity. The velocity potential at an elevation z will be 
given by 
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<P(x,z,t) = <p(x,t)f(z) (3) 

where f{z) is the vertical distribution function represented by 

f(z)    = cosh k(h+z)! cosh kh (4) 

Now we separate Eq. (1) into two equations expressed in terms of the 
surface elevation £ and the flow rate vector <Q instead of <p. The flow rate vector 
Q is defined by 

Q=\      V0 dz ® 
J -h 

Substituting Eqs. (3) and (4) into Eq. (5), we obtain 

Q = (?v4>/g (6) 

On the other hand, the kinematic boundary condition at the water surface 
including the convection term due to a steady current requires 

^= -(iig)T>4>mt (7) 

Here the complex velocity potential <j> is expressed in terms of the amplitude 
and the phase as 

$=*We* (8) 

where ip = Ik • x — at is the phase function. When we ignore change in the 
amplitude of the velocity potential as compared with change in the phase, 
Dip I Bt   is represented as 

D0/D(   =-ia<j) (9) 

Substitution of Eq. (9) into Eq. (7) yields the following expression of the 
surface elevation I, in terms of <j>: 

£, = i(o/g)4> (10) 

Substituting Eq. (10) into Eq. (5) and differentiating with t, we obtain 

dQ/dt + co<CV(^/o) = 0 (11) 

On the other hand, using Eqs. (7) and (9), $ is expressed as 

<p = (g/oa)d^/dt (12) 

Substituting Eqs. (6), (7) and (12) into Eq. (1), we obtain 

mdi,/dt+ V-(UO + V-(nQ) = 0, (13) 

m=l + {o/a)(n-l), n=Cg/C 

Equations (11) and (13) are time-dependent mild-slope equations 
extended to a wave and current coexisting field. If we set the steady current 
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velocity vector U = 0, these equations reduce to the ones proposed by 
Watanabe and Maruyama (1986), though the latter include an additional 
term for the energy dissipation due to breaking. 

3.    NUMERICAL COMPUTATION METHOD 

Equations (11) and (13) are solved by using a finite difference method. 
A study area is divided into grid cells and a staggered mesh scheme is 
employed as shown in Fig. 1. Successive computation is conducted 
alternately for the flow rate Q and for the water surface elevation I,. If the 
convection term due to the steady current in Eq. (13) is neglected, Eqs. (11) 
and (13) can be easily solved by using an explicit finite difference scheme. 
However, when this terms is included as needed for general wave and current 
coexisting systems, some problems appear in numerical computations, such 
as numerical diffusion and unphysical reflection from the boundaries. In 
order to determine the most appropriate one among various finite difference 
schemes, we consider a one-dimensional wave and current field. The 
following notation is used. 

V=l,{iAx,jAx) 

Q> = Q{(i + l/2)Ax, (j+l/2)At} 

(14) 

(15) 

namely the subscript i denotes the spatial point and the superscript./ denotes 
the time-step. Equations (11) and (13) for the one-dimensional case are 
discretized to yield 

At 

At 

8((/C) n,Q <-"- xQ 
J 
i-i 

8x Ax 

n2      fS/0) 
a>C      

j 

i+l -(W[ 
0 

Ax 

= 0 (16) 

(17) 

where m; = 1 + (a; / GO) (nj — 1). In Eq. (17), the flow rate Q J+'  can be calcul- 

ated explicitly since the surface elevations I,J    and ^ '  are known values. 

The problem is how to discretize the convection term S (UZ,) / 5* in Eq. (16). 
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Fig. 1     Staggered mesh scheme. 
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Table 1     Difference schemes for the convection term. 

scheme for S  (U C )/S  x numerical diffusion term 

i,r ,.,-r 

i,f i -f .-. , r ,-r 
2 A x A 

— ) 

U > 0 
J 

U < 0 

U d'C 
-—A x  

2 3 x ' 

'(li^L^.I^r^i) 
2        2 A x 2 A x m 

A x mr 
A x 

U < 0 

U UA  t      3 ! C      I) 
— Ax(l ) + A   t 

2 a A x       3 x a       a 

3 !(nQx)   A t   3 MnQx) *     
3 x! 2       3 x3 t 

IV f ,-. 
2 A x 

Uz 3 " f U 
 A   t  + A   t 

2a 3 x'     2a 
3 '(nQx)_A t   3 z(nQx) 

3 x! 2       3 x! 

f ,-,/. = (r ,-i  +r ,)/2 

First we use two types of the modified Euler method, which is of an 
implicit scheme. Type I in Table 1 is an up-wind differene scheme. With this 
scheme, however, a numerical diffusion term shown in Table 1 is added to Eq. 
(16). Such a diffusion term doesn't appear when a central difference scheme 
(Type II) is used, types I and II are of implicit type, and therefore it will be 
hard to extend them to computations of two-diimensional wave fields. 

Next we discuss explicit difference scheme. Type III is an up-wind 
difference scheme and Type IV is a central difference scheme. With either of 
these schemes, however, a numerical diffusion term is added to Eq. (16) as 
shown in Table 1. This problem is solved by adopting the Alternating 
Direction Explicit (A. D. E.) method as presented as Type V in Table 1. In 
this scheme a value at a point (i — 1) at a time-step (j) is replaced with the 
value calculated at the time-step (j + 1) just before. By using this method, Eq. 
(16) can be solved explicitly without numerical diffusion. 

Now the treatment of nonreflective boundary condition is discussed. 
For the equations proposed by Watanabe and Maruyama (1986), which 
include no convection term due to currents, the nonreflective boundary 
condition is given by the flow rate. Namely the flow rate at a point * on 

the boundary at time t, Q 'x   , is calculated by the flow rate at the inner 

point* — Ax at timer; -x,Q '"^ .   If this boundary condition given by the 
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flow rate is used in the calculation for a wave and current coexisting field, 
the surface elevation at the point x + Ax/2 is needed in orer to evaluate the 
convection term in Eq. (16) with the scheme of Type V. This point is, 
however, located outside the calculation region, and therefore we must give 
the convection term along the boundary by backward difference scheme. 
Using this scheme, the second term in Eq. (16) is evaluated at the point 
x — Ax/2, whereas the third term is evaluated at the point x. The difference of 
the evaluation points causes unphysical reflection from the boundary. 

In order to evaluate these terms at the same point, the calculation 
region is extended up to the point x + Ax/2 and the boundary condition is given 
by the surface elevation Z, instead of the flow rate Q, as shown in Fig. 2. The 
surface elevation at the point x + Ax/2 on the boundary at time t is given by 
the one at the inner point x — Ax/2, at the time t—x, using a characteristic line 
C+C/,as: 

(18) 

where x is defined by 

i = Ax/(C+ U) (19) 

By using this boundary condition, the surface elevation at the point 
x + Ax/2 on the boundary is given independently of the difference scheme. 
Surface elevations at inner points are given by A. D. E. difference scheme, 
which can evaluate the second and third terms in Eq. (16) at the same point, 
and consequently we can avoid unphysical reflection. 

For the two-dimensional case, x is calculated from the next equation 
instead of Eq. (19). 

x = Axcosan/(C + U) (20) 

where an is the direction angle of the incident wave component measured from 
the normal line to the boundary. 

By applying this procedure to a nonreflective boundary, the offshore 
open boundary condition is set in terms of the surface elevation as 

x   x+ax/2 
C+u 

Fig. 2     Nonreflective boundary condition. 
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i,'R
x   (x0 + bx,yg) = l-z   (x0+Ax,y0) (21) 

—   a; sin { k (x0 + Ax) + ky0 - at} 

where a; is the incident wave amplitude. 

4.    RESULTS OF NUMERICAL COMPUTATION 

To examine the applicability of these equations and method, numerical 
computations have been performed for two cases of wave deformation due to a 
current only. 

The first case is a one-dimensional wave and current field as shown in 
Fig. 3. Figure 4 shows the wave height change in the shoreward direction in 
the steady state. In this figure H is the wave height, C the wave celerity and 
subscript 0 denotes quantities at the location where no current exists. The 
wave heights change corresponding to the current intensity and direction. 
Waves freely pass through the nonreflective boundary, and no unphysical 
reflection appears. 

Figure 5 shows time histories of the surface elevation at the boundary. 
The wave amplitudes and the arrival time to the boundary change according 
to the difference of currents. 

The numerical computation results are compared with the analytical 
solutions in Fig. 6. Solid lines show the analytical solutions given by the 
wave action conservation equation, and solid circles show the numerical 
solutions. The numerical solutions agree quite well with the analytical 
solutions. On the other hand, if we neglect the scalar product k • U in the 
dispersion relation, computations become easier particularly for a two- 
dimensional case. However if we set o = co , both the numerical and 
analytical solutions deviate far from the true analytical solutions. From 
these results, it is confirmed that the scalar product k • U in the dispersion 
relation cannot be neglected for a wave and current coexisting system. 

Hr=0.2r 

T=1.0! 
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^~V/ x 
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Fig. 3     Calculation condition for a one-dimensional wave and current field. 
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Fig. 4     Wave height change due to a current. 
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Fig. 5     Time history of the surface elevation at the boundary. 
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The second case is for the wave refraction due to a current. The steady 
current is assumed to change in the x-direction only and waves are incident 
obliquely into the constant depth region as shown in Fig. 7. In this 
calculation, for the wave direction needed for solving the dispersion relation, 
the analytical solution given by Longuet-Higgins (1961) is adopted. The 
numerical solutions for the wave height and direction are compared with the 
analytical solutions in Fig. 8. Here the wave direction in the numerical 
calculation has been obtained from the principal direction of the flow rate 
vector. The numerical results agree well with the analytical solutions. 

Fig. 7 

U/C0=0.3 

2 m 

5 m 

Calculation condition for wave refraction due to a current. 

 analytical 

  numerical 

Fig. 8       Comparisons between numerical and analytical 
solutions of the wave height and direction. 
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5.    DETERMINATION OF THE BREAKER LINE AND WAVES 
IN THE SURF ZONE 

First we discuss the determination of the location of the breaker line 
which is very important to properly predict nearshore wave and current 
fields. 

Goda (1970) has presented a breaker index diagram which is expressed 
in terms of the ratio of the depth at the breaking point hb to the equivalent 
deepwater wave height H0' as a function of the deepwater wave steepness 
H0'/L0 and the bottom slope s. This diagram can be used to evaluate the 
location of the breaking point of a single wave train. On the other hand, 
Watanabe et al. (1984) have proposed another breaker index diagram using 
the ratio of the amplitude of horizontal water particle velocity to the wave 
celerity at the breaking point, ub I Cb, in order to extend to a composite wave 
field. This can be obtained from the Goda's breaker index diagram by 
converting the governing parameter from hb IH0' to ub I Cb with a linear wave 
theory. It will be applicable even to a wave and current coexisting system 
when a moving coordinate relative to the current is adopted. 

In order to examine the applicability of this breaker index, a series of 
laboratory experiments have been carried out on the breaking of waves on a 
current with the same or the adverse direction. Using the breaking depth hb 
obtained from the experimental results, the horizontal water particle velocity 
amplitude ub at the mean water level and the wave celerity Cb are calculated 
with a linear wave theory as 

«(, = (Hb 12) o cosh khb / sink khb (22) 

Cb = o/k (23) 

where the wave number k and the angular frequency o are calculated from 
the dispersion relation for a wave and current coexisting system as the values 
relative to the current. The breaker height Hb is calculated from the incident 
wave height Hi considering the bottom and side wall friction as 

Ei(Ci+ Ui)/oi = Eb(Cb + Ub)/ob-AE/a (24) 

E = (l/8)pgH2 

where U is the mean velocity of the current, subscripts i and b denote 
quantities at the locations where the incident wave height and the breaking 
point are respectively given, and AE denotes the energy dissipation rate due 
to the bottom and side wall friction, which is calculated with the friction law 
from a wave and current coexisting system presented by Tanaka and Shuto 
(1981). 

Using Eqs. (22) and (23), the ratio of the horizontal water particle 
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Fig. 9     Comparisons between the breaker index and experimental results for 
wave and current coexisting fields. 
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Fig. 10     Cross-shore distributions of the wave height. 
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Fig. 11     Cross-shore distributions of the mean water level. 
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velocity to the wave celerity, ufe / C&, is calculated. The relation between this 
ratio and the relative water depth at the breaking point, hb I Lb, is compared 
with the breaker index proposed by Watanabe et al. (1984) in Fig. 9, where the 
bottom slope s is 1/20 and 1/30, respectively. Different symbols are used for 
the experimental results according to the ratio of the steady current velocity 
at the breaking point to the wave celerity at the deepwater. For the cases of a 
strong adverse direction current, the experimental results show larger values 
of ub I Cb than the breaker index. This will be attributed to the acceleration of 
breaking, which is ignored in Eq. (24), due to the turbulence transported 
toward the offshore by the current. As a whole, the experimental results 
agree fairly well with the breaker index. Hence this breaker index is 
applicable with a sufficient accuracy to a wave and current coexisting field. 

Using the time-dependent mild-slope equations proposed in this study 
together with the above breaker index, numerical computations have been 
conducted for the location of the breaking point and the deformation of waves 
coexisting with a current on a uniformly sloping beach. For the computation 
of wave decay in the surf zone, the dissipation term proposed by Watanabe et 
al. (1988) has been added to Eq. (11). 

Figure 10 shows the comparisons of the computed and the experimental 
result of the wave height distributions. The left figure is for a case of no 
current, while the right figure is for an adverse current with the flow rate of 
224 cm3/cm/s. The experimental values are represented by the wave heights 
calculated from the root mean square of the measured surface elevation as 
H* = 2 V2"iirms. The computed and the measured locations of the breaking 
point (B.P.) shows a good agreement regardless of the presence of currents. 
The wave height distributions also show a good overall agreement between 
the computations and the model. A slight overestimation of the wave height 
for the case of an adverse current is caused owing to the ignorance of the 
turbulence transported into the offshore across the breaking point by the 
current. 

The comparisons of the mean water level between the computations 
and the measurements are shown in Fig. 11. The computed values agree well 
with the experimental results. 

6.    EXAMPLES OF THE NUMERICAL COMPUTATION FOR 
A PLANAR TWO-DIMENSIONAL CASE 

The present numerical model has been applied to computing a wave 
field around detached breakwaters on a sloping beach. The detached 
breakwaters are placed at a water depth of 3 m and the bottom slope is 1/20. 
Waves are incident normal to the detached breakwaters and the contour 
lines, and the incident wave height and period are 3.0 m and 5.7 s. 

In this computation including wave decay due to breaking, the wave 
height should become 0 along the shoreline, and therefore the shoreline 
boundary condition is set as 
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Fig. 12      Distributions of the wave height. 
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Fig. 13      Distributions of the wave direction. 
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Fig. 14      Distributions of nearshore currents. 

S'Uo. y0) = o (25) 

Along the side boundaries, perfect reflection of waves and no-slip of mean 
currents are assumed. 

Figure 12 shows distributions of the wave height with and without 
wave-current interaction : the figure on the left hand-side is the result 
without wave-current that with wave-current interaction. The change of the 
wave height can be observed when wave-current interaction is taken into 
consideration. 

Distributions of the wave direction for both cases are shown in Fig. 13. 
Refraction due to the nearshore current is well observed near the shoreline. 

Figure 14 show distributions of the nearshore current for both cases. 
Reduction of current can be observed when wave-current interaction is 
included. 

7.    CONCLUSIONS 

A new set of time-dependent mild-slope equations has been derived for 
a wave and current coexisting field, and numerical computational method has 
been presented. Validity of this model has been demonstrated by comparisons 
of numerical results with analytical and experimental results.  Then it has 
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been found that the breaker index expressed by the ratio of the water particle 
velocity to the wave celerity is applicable to a wave and current coexisting 
system. Finally this model has been applied to general two-dimensional wave 
and current fields and it has been found that wave-current interaction plays 
an important role in nearshore waves and currents. 
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