
CHAPTER 24 

EFFECT OF BOUSSINESQ EQUATIONS 
ON WAVE SPECTRA PROPAGATION 

J.P.Sierra', A.S.Arcilla', J.J.Egozcue"and J.L.Monso" 

ABSTRACT 

A 2-D numerical model has been developed to simulate wave propagation prior 
to breaking. This non linear hydrodynamic model works in connection with various 
spectral analysis routines. This paper intends to study the propagation effects 
on the wave time-series and on the corresponding spectral density functions in 
order to gain insight on both the spectral description of waves and irregular wave 
propagation. 

1.- INTRODUCTION 

Flow properties in coastal areas are of great importance in Maritime 
Engineering, for the solution of numerous problems such as the desing of offshore 
and coastal structures, shore evolution analysis, ship motions etc. For all of these 
subjects, a detailed konwledge of the shallow water wave heigth and propagation 
direction are required. State of art wave propagation models are usually either 
linear or unidirectional (in the input). 

However, in order to enable the characterizacion of desing wave conditions, the 
use of two parameters as wave height and period is not enough. Wave randomness 
must be considered, since the assumption of unidirectional and monochromatic 
waves, can lead to unnacceptable results from the Maritime Engineering standpoint. 

One of the best ways to describe the wave irregularity is through a spectral 
density function, which is able to condense easily all the information involved in a 
wave time-series, with different frequencies and wave heights. If the possibility 
of waves travelling in different directions is considered, the estimation of the 
directional spectrum will be necessary, in order to achieve a full description of 
the wave characteristics. 

Although spectral analysis has been widely used for several decades, a non 
linear model has been seldom coupled with spectral models. 

In this paper a 2-D numerical non linear model for the simulation of wave 
propagation prior to breaking is described. In this model, both regular and irregular 
wave trains can be used. The propagation effects on the wave time-series and on the 
spectral density function are studied, in order to gain insigth on both the spectral 
description of waves and irregular wave propagation. 
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2.- WAVE PROPAGATION 

The numerical model is based on Boussinesq-type equations, in which the 
vertical velocity of the fluid particles is supposed to increase linearly from zero 
at the bed to a maximum magnitude at the free surface. The Boussinesq equations 
are formulated in terms of vertically-integrated mass and momentum conservation 
laws and are obtained with a perturbation tecnique (S.Arcilla and Monso, 1985), 
yielding the following expressions (Peregrine, 1967). 

Continuity equation 
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Where H = h + rj 

h is the still water depth 

r\ is the free surface elevation 

p = J_h u.dz is the mass flux along the x axe. 

q = J_h v.dz is the mass flux along the y axe 

u,v are the particle velocities along the x,y, axes. 

Other terms can be easily included in these momentum equations, (S.Arcilla 
and Monso, 1986). With these additional terms, (e.g.Coriolis acceleration, 
wind friction, turbulent viscosity or bottom friction) a large number of physical 
phenomena can be adequately reproduced by the model. 

The momentum conservation laws are highly non linear differential equations, 
and they include a third order derivative term, which is due to the existence of a 
constant vertical acceleration. 

The vertical integration of equations (1),(2) and (3) reduces the problem from 
three to two indepedent dimensions. These equations are suitable for a wide range 
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of wave lenghts. In particular, short wind waves in shallow water provide an 
acceptable ratio of water depth to wave length except for the shortest waves. These 
waves can be thus considered as long waves, and their propagation can be correctly 
simulated by the model. 

The behaviour of different kinds of waves can be characterized by Ursell's 
parameter (UR). 

UR = ,£ (4) 

Boussinesq equations (UR = 0(1)) degenerate into de linear long-wave equations 
(UR « 1) or the Airy equations (UR » 1) with certain additional errors (S. 
Arcilla et al.,1985). This means that a single model, based on Boussinesq-type 
equations may be used to cover the whole range of physical problems ( provided 
the associated errors are acceptable ). When waves are of finite amplitude, the 
ratio h/L is small and breaking does not occur. 

Considering different terms of the momentum equations and varying initial 
and boundary conditions, it is possible to reproduce a wide variety of physical 
phenomena such as Kelvin waves, storm surges, solitary waves, refraction, reflexion, 
diffraction, bottom friction, etc. 

The equations are solved by means of an implicit centered finite-differences 
technique with variables defined on a space staggered rectangular grid. A double- 
sweep algorithm (Abbott and Ionescu, 1967) is invoked for solving the system 
avoiding large and expensive matrix inversion operations. 

The truncation errors are of second order in time and space, i.e. T.E. — 
0(Ax2,Ay2,At2). The numerical scheme is conditionally stable and convergent. 
The propagation model is valid and yields reasonable results when h/L < 0.2. This 
means that the model can be applied in shallow or intermediate water depth but 
not in deep water. 

Numerical solution 

*102 

Figure 1. Sinusoidal long wave propagation 

In open boundaries, an absorbing-reflecting boundary condition (S. Arcilla et 
al., 1986) is used. In this way, the multiple reflections due to innerly reflected 
waves are avoided, because these reflected waves are allowed to escape the domain 
unhampered. 

The model was first calibrated in its linear version. Here, the momentum 
equations only include the local acceleration and the linear part of the pressure 
gradient term. 
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Figure 1 shows the application of the model for a sinusoidal long wave 
propagation. The characteristics of the discretization were Ai = 200 m., Ay = 
200 m. and At = 5 s. 

The wave parameters were : Wave amplitude a=l m., wave period T=300 s., 
wave length L=9389 m. and the depth was h=100 m. 

The figure shows a good agreement between the numerical model results arid 
the analytical solution. 

Another test was made for sinusoidal short waves in shallow water. The 
characteristics of the discretization were As; = 3 ro., Ay = 3m. and At = 1 s. 

and the wave parameters were Wave amplitude a=l m., wave period T=18 s., 
wave length L=125 m. in a depth of h=5 m. 

Analytical solution 
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Figure 2. Sinusoidal short wave in shallow water propagation 

Figure 2 shows that as the wave progresses the quality of the results decreases, 
although the fit between numerical and theoretical solutions is relatively acceptable. 
The poor quality of the results is obviously due to the fact that linear theory is not 
valid in shallow water. 
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Figure 3. Reflection of a sinusoidal wave 
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Once the model had been tested for wave propagation, tests were made for 
reflecting waves, comparing computed results with the theoretical solution. Figure 
3 shows the reflection of a sinusoidal wave on a vertical wall with constant water 
depth, forming a stationary wave. 

The discretization and wave characteristics are the same as in the example 
showed in figure 1. The fit at different instants of time, between numerical and 
analytical results is excellent. 
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Figure 4. Illustration of model accuracy for different Courant numbers 

Finally, phase and amplitude portrait errors were analysed. As an example, 
figure 4 shows the ratio of numerical celerity to theoretical celerity vs the number 
of points per wave length for different Courant numbers. It is seen that, for Cr=l, 
an acceptable accuracy is obtained with values of N/L > 20. When the Courant 
number increases, it is difficult to get a similar accuracy though more points per 
wave length are used. 
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Figure 5. Solitary wave propagation 

After the linear version was calibrated, the non linear model was tested with 
cnoidal wave theoretical solutions, using equations (1), (2) and (3). The analytical 
solution of these equations, that exclude frictional stresses, Coriolis accelerations 
and similar terms, is the solitary wave. Figure 5 demostrates the good fit between 
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numerical and theoretical results after 24 seconds. The discretization characteristics 
were Am = 2.5 m., Ay = 2.5 m. and At = 0.25 s. 

and the wave parameters were wave height H0 = 1.5 m., depth l = 5m. 

3.- SPECTRAL MODELS 

In scalar spectral analysis, numerous models exist for time series generation and 
processing. These models are based on different techniques and may be divided in 
two groups: 

- Conventional methods, based on the Fast Fourier Transform (FFT) algorithm 
(Cooley and Tukey, 1965). 

-Parametric methods, involving autoregresive (AR) and autoregresive-moving 
average (ARMA) models. 

Every technique presents several advantages and inconvenients with respect to 
the others. Therefore, the selection in every case of the most suitable algorithm 
will be necessary. For improving the use of design spectra in Maritime Engineering, 
several pattern spectra have been introduced in last decades. These spectra 
depend on various parameters. Fitting the parameters to the local conditions, 
a representative spectrum is obtained. The Pierson-Moskowitz spectrum (Pierson 
and Moskowitz, 1964) and the JONSWAP spectrum (Hasselman et al.,1973) are 
the most well-known ones. However, the two formulations are only accepted in deep 
water. In shallow water, the use of suitable spectra as TMA spectrum (Bouws et 
al.,1983) is needed. 

An example of the use of scalar spectral analysis techniques, in which the time 
series is generated from a JONSWAP spectrum through an ARMA(8,1) model, is 
showed in figure 6. The parameters of the JONSWAP spectrum were cra = 0.07, 
erb = 0.09, a = 0.03, 7 = 3.3 and u>„, = 0.18 

Figure 6.  Time series generated from a JONSWAP spectrum 

In figure 7, three spectra are plotted. They belong to the initial JONSWAP 
spectrum, the theoretical spectrum calculated from the autocorrelation function 
corresponding the JONSWAP, and the spectrum evaluated from the time series 
simulated. The agreement between the three spectra is remarkable, showing the 
validity of the time series generation technique. 
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On the other hand,  the determination of the directional spectral density 
function S(w,6) is made by recasting the function as 

with 

S(w,6) = S(u).D(u>,») 

I    D{u,8).d6 = l 
Jo 

(5) 

(6) 

where 5(u>) is the scalar spectral density function, computed using one of the 
aforementioned methods, and D(u>,9) is the directional spreading function. A 
convenient approximation to this function may be obtained by expanding D(w,9) 
as a Fourier series as 

D{u, 6) = - [- + 5^(a*-cosk6 + bk.sinkff)] 

ajtjfej are Fourier coefficients 

(7) 
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Figure 7. Spectral density functions of the time series generated 

Measurement of directional waves in Nature are rather difficult. For this 
purpose, the pitch-roll buoy is one of the most extended instruments nowadays. 
This device provides three time series corresponding to the free surface elevation 
f](t), and the wave slopes in two perpendicular directions r]x(t), rjy(t). Having time 
series of three canals, just the two first Fourier coefficients can be computed only. 

For the estimate of the directional spectrum, the way to be followed involves 
three steps : 

i) Determination of the cross spectra between the time series 

ii) Computation of the Fourier coefficients for different frecuencies. 

iii) Interpolation of the directional spectrum. This last step may be carried out 
by two ways. The first is fitting the directional spectrum to prefixed distribution 
functions. The second is the rational interpolation through AR and ARMA models. 
The latter was tested with 10 directional wave records obtained in the North Sea 
the 1-12-1983 and provided by the Programa de Clima Maritimo of the Ministry 
of Public Works (MOPU) in Spain.   These time series were recorded at intervals 
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of 3 hours on a well developed sea with a wind direction of 250 — 260° for the first 
series. The wind direction changes to 0° in the tenth series, producing a change in 
the wave direction for the high frequencies. 

Figures 8 and 9 show the wind and wave mean direction for the first and the 
tenth records. 

0.2 

FREQUENCY (HZI 

Figure 8. Wind and wave mean direction. Series 1 

FREQUENCY(HZ I 

Figure 9.  Wind and wave mean direction.  Series 10 

The directional spectra from these records (with three time series r/(t), rjx(t), 
T]y(t) in every record), were determined using rational interpolation through AR 
and ARMA models. In figures 10 and 11, the directional spectrum modes, i.e. the 
predominant directions, for every frequency are plotted. The results show a good 
reproduction of the mean direction in the directional spectra calculated. 

The use of rational interpolation gives an aditional advantage, since it is very 
easy to reverse the procedure and given a directional spectrum to generate a record. 
This record will be composed of three time series corresponding to the free surface 
elevation r)(t) and other two parameters, such as the wave slopes %(t), r]v(t). 
Nevertheless, these two parameters may be replaced for others if the transference 
function is changed. 
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4.- WAVE TIME-SERIES PROPAGATION 

As it has been showed in section 2, the present model reproduces closely the 
different phenomena involved in the regular wave trains propagation. In the case 
of irregular waves, it would be necessary to determine each parameter from the 
field data or calibrate them with physical models. Both possibilities, are out of 
the scope of this work. Because of the difficulty of handling large wave records, 
the authors have assumed their representation by means of the spectral density 
function. Therefore, when random waves are used, the calibration of the model is 
done assuming the invariability of the spectrum when waves travel on a constant 
deep area and without obstacles that could interfere their propagation. 
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Figure 10. Predominant directions in directional spectrum. Series 1 

Figure 11. Predominant directions in directional spectrum. Series 10 

A time series generated by means of one of the aforementioned techniques 
was propagated using the Boussinesq model, over a fluid domain with horizontal 
bottom and with a depth of 5 m. The result was another time series. As the visual 
comparison between the two time series is very difficult, their characteristics have 
been confronted computing the spectral density functions, that are showed in figure 
12. The plots of these functions are practically identical and therefore it implies 
that the numerical model reproduces accurately the irregular wave propagation, 
over a horizontal bottom. 
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Another case analysed was the refraction of irregular wave over an uniform 
slope. Figure 13 presents the spectral density functions of the time series before 
and after the refraction. In this plot it is shown that the peak period is the same, 
but refraction produces a secondary peak with a frequency that is nearly twice the 
peak frequency. Then refraction produces a transference of energy towards higher 
frequencies, keeping the peak period but decreasing the mean period. 
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Figure 12. Spectra of the generated and propagated time series 
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Figure 13. Spectral density functions of the initial and refracted time series 

Moreover the study of the difraction of irregular waves was carried out. In 
this study, a linearized version of the numerical model was employed. In figure 14, 
the fluid domain is illustrated. The boundary with the gap is a vertical wall. The 
other boundaries are open, to avoid reflections. In the points A,B,C, and D, the free 
surface elevation was recorded. When the time series were obtained, the spectral 
density functions were determined and compared with the spectral density function 
of the initial time series, as it is showed in figure 15. The analysis of these figures 
shows logical results because the greater the distance to the gap is, the smaller the 
area comprised below S(u) is, i.e. the energy of the spectrum decreases when the 
point is far away. On the other hand, the peak frequency does not change after 
difraction in all points inside the fluid domain, though this circumstance can be 
due to the use of a lynearized version of the propagation model. 
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Finally, a real example has been analysed. Here, the lay-out and the 
bathymetry are the ones corresponding to a Spanish harbour. Figure 16a represents 
the input wave spectrum used at the entrance of the harbour. This spectrum has 
been derived from field measurements. 

Figure 14.Difraction study. Fluid domain. 
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Figure 15. Spectral density function before and after difraction. 
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Figure 16b shows the result of carrying out an ARMA spectral process of the 
surface elevation time series, obtained after a run of the propagation model, inside 
a basin of the harbour. This output wave spectrum has a secondary peak in the 
origin. Since the spectrum has been plotted with 100 points, the secondary peak 
means that a long wave with a period up to 200 seconds is present in the time series 
recorded by the numerical model inside the basin. Actually similar wave conditions 
to those of the numerical simulation gave way to the record of long waves with a 
period of 240 seconds in the same basin. Therefore, the propagation model allows 
simulating and discovering long wave phenomena in real cases. 
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Figure 16. Input and output wave spectrum. 

5. CONCLUSIONS AND FUTURE PERSPECTIVES 

The main conclusions of this paper are 

- The wave propagation numerical model simulates accurately the propagation 
of regular and irregular waves in a wide range of conditions. The model behaviour 
has proved to be satisfactory for the usual values of the control parameters. The 
main exception is the breaker zone, in which the wave height is an important 
fraction of the water depth. However, the third order (truncation error) scheme 
which is now being developed, is expected to provide improved results in these 
cases. 

- With a given S (<*>), a time series ??(i) can be simulated. This signal can be 
used as a model input. After the run of the propagation model, the result will be 
another time series r)*(<), which conveniently processed will give way to another 
spectral density function S'(ui). 

- With a given directional spectrum S(w,6), a record with three time series 
(ri(t), rjx(t), r)y(t) for example) can be simulated, and conversely, three time series 
let the directional spectrum to be obtained. Up till now, the propagation model 
does not accept three time series as input, though it can yield these three signals 
as output. The efforts are now concentrated in getting the directional wave as the 
input of the model. In this case, a S(u>,8) could be the incoming one to the model, 
and another directional spectrum S"(w,9) could be the outgoing one. 

- Numerical simulation with Boussinesq equations is an useful tool for the 
spectral determination and the analysis of the spectral evolution in shallow water 
when waves are travelling. The model has been applied succesfully to real cases. 
With the coupling between the Boussinesq model and the spectral techniques 
developed in this paper, it is possible to obtain a more compact and coherent 
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information on irregular wave propagation in coastal zones, bays and harbours, 
taking into account non-linear propagation effects. 
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