
CHAPTER 14 

Are solitary waves the limiting waves in long wave runup ? 

Costas Emmanuel Synolakis t, A.M., ASCE 

This is a study of the maximum runup of single long waves on plane beaches. 

Laboratory data are presented that suggest that solitary waves attain the higher 

runup distances than other single long waves with identical generation characteris- 

tics, such as energy or momentum. These results suggest that solitary waves may 

provide a limiting condition for long wave runup on plane beaches. 

1. Introduction. 

The problem of determining the runup and reflection of long single waves usu- 

ally arises in the study of the coastal effects of tsunamis. Tsunamis are long water 

waves of small steepness generated by impulsive geophysical events on the ocean 

floor or at the coastline. Solitary waves and cnoidal waves are believed to model 

important aspects of the coastal effects of tsunamis well and in the past twenty 

years there has been a large number of analytical, numerical and laboratory in- 

vestigations studying the runup of solitary waves. There has been comparatively 

less attention paid to the runup of cnoidal waves. However, consensus has emerged 

that one suitable physical model for this process is the formalism of a long wave 

propagating over constant depth and encountering a sloping beach. 

A comprehensive review of these results may be found in Synolakis (1986, 

1987, 1988), where some basic questions -such as the analytical substantiation of 

empirical relationships- have been resolved. However a basic question still persists 

and it refers to the actual shape of tsunamis in nature which are rarely Boussinesq- 

solitary wave-like or cnoidal wave like. Therefore most analytical results have only 

been used to calibrate numerical codes which solve the equations of motion with 

more "realistic" and "tsunami-like" profiles and actual topographies. 

Unfortunately there is little knowledge as to what constitutes a "realistic" 

tsunami profile for specifying boundary or initial conditions in numerical solutions. 

No data exist on the surface elevation of a tsunami at generation and little data 

exist on the elevation of tsunamis far from the source, although this is likely to 

change with the field implementation of the THRUSH program (Bernard, 1988). 
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The question then arises of whether it is useful to develop numerical schemes 

correct to many orders of approximation when realistic initial or boundary data 

do not exist. One could argue that the details of the wave at generation may not 

be very important in the eventual propagation process and the coastal effects; it is 

well established that long waves fisssion after sufficient propagation distances into 

series of solitary waves. However, then the process can be described relatively well 

analytically. 

In this paper, I will report some preliminary data that address this question 

in particular. I will describe a series of laboratory experiments which suggest that 

although the details of the wave at generation are important in estimating the 

coastal effects at finite distances, it is possible to use solitary wave theory to obtain 

a limiting condition for long wave runup. 

2. Basic phenomenology and dimensional analysis. 

Consider the two-dimensional topography consisting of a constant depth region 

of depth d encountering a plane sloping beach of angle /?. This is the model most 

frequently used in calibrating numerical codes and it is only appropriate to check 

its sensitivity to different initial conditions. The topography is shown in figure 1. 

Figure 1. A definition sketch for long wave runup. 

Waves will be generated with a vertical plate moving horizontally along the 

path x = £(i), 0 < t < T, and where T is the generation time. The origin of 

the coordinate system is at the initial position of the wavemaker and x increases 

seaward. The problem can be stated as finding the maximum runup R that a wave 

motion generated with trajectory £(<) at a distance L from the generator in a fluid 

of depth d, density p and viscosity fi will attain on a sloping beach of angle /?. It is 
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assumed that the flow boundary is hydrodynamically smooth. The following table 
lists the independent and dependent variables. The appropriate units are included 
in parentheses. 

DIMENSIONAL ANALYSIS f 

R is the maximum runup (L), 
d is the depth of the constant depth region,   (L), 

T is the characteristic generation time (T), 

S is the stroke of the generator (L), 
L is the propagation distance (£), 
P is the angle of the sloping beach (-), 
g is the acceleration of gravity (L/T2), 
p is the density of the fluid (M/L3), 

and 
li     is the viscosity of the fluid (M/LT). 

In dimensional terms, one can write 

B.= ?(d,8,T,p,n,L,g,0). (1) 

If the equations of motion were solvable for arbitrary plate trajectories, specification 
of the independent variables on the right hand side of equation (1) would be suffi- 
cient to define the runup exactly. Unfortunately, no analytical of numerical methods 
exist to calculate the evolution of a wave through breaking to its maximum runup 
and it is necessary to conduct laboratory experiments to determine the functional 
form of J. 

Buckingham's •K—theorem suggests that six independent groups can be con- 
stucted. The following is one possible grouping of variables %, 

R -rff,  (S/T)rf     s     T /»   L\ M 

t In this list, I have replaced the trajectory time history £(t) with the maximum 
stroke S and the generation time T. During the experiments, f (i) will be varied 
and S and T will be kept constant to determine the effect of the details of the 
trajectory. ~\s 

X As is customary, the variable have been assembled in dimensionless groups that 
have the form of standard fluid mechanics parameters such as the Reynolds number 
Re = (S/T)d/(/*/p) and the Froude number Fr = S/(Ty/gd). 
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For fixed propagation distances L, inviscid flow /j, = 0, and fixed slopes /?, this list 

reduces to f 

!-'(xk*i/5> 
One can now speculate on the possible form of the function I. For a given 

depth, and given generation number Fr = S/(Ty/gd), as the generation time 
T-^/g/d increases the normalized runup R/d should increase, because then the 
stroke increases in proportion and higher waves are generated. However, this in- 
crease should not be observed for very large generation times because then the waves 
become unstable, break at generation and fission to smaller waves. It is likely that 
for each given value of the generation number, there exists some limiting generation 
time beyond which no further increases in runup would be possible. This would 
imply runup saturation and it would provide a limiting condition for long wave 
runup. 

Whether this speculation is correct and whether different £i(t)... £n(t) with 
identical S/(T-,/gd) and Ty/g/d result in different R/d is unknown and will be 

explored in the next sections. 

3. Experimental results. 
Experiments were conducted in the 40m wave tank facility of the W.M. Keck 

laboratories of the California Institute of Technology. The facility is equipped with 
a programmable hydraulic wave generator and a wave measuring system. A ramp 
of slope 1 : 19.85 was installed at one end of the tank to model a uniformly slop- 
ing beach. The ramp surface was made of anodized aluminum panels and it was 
hydro dynamic ally smooth over the range of flows studied. 

The experimental procedure is described in detail elsewhere (Synolakis, 1986, 
1987). The experiments consisted of specifying a normalized plate trajectory shape 
£{t)/d and of then varying S and T and of measuring R until a sufficiently large 
data set was generated to draw some preliminary conclusions. 

3.1 Ramp trajectory. Type R waves. 
The simplest possible plate motion is a ramp trajectory defined by 

£M = (§)*, o < t < T, 
ew = o, * > T. 

f I have resisted the temptation to use an Irribaren like parameter in this analysis. 
This type of long waves change substantially as they propagate over constant depth 
and it is difficult to define the wave steepness consistently. If further analysis is 
desired, a tabulation of the data may be found in Synolakis (1986). 
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Figure 2 The wave hierarchy generated with a ramp trajectory with generation time 
T^/gJd — 7.2 and different strokes. The profiles were measured at approximately 20 
depths away from the wave generator. The profiles are not syncronized in time and 
their relative positions do not necessarily reflect differences in propagation speeds. 
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In this case the entire wave generation process is described by three parameters 
only, the depth, the stroke and the generation time. For identification purposes in 
the subsequent discussion, these waves will be referred to as type R waves. 

The experiments covered a range of depths from 12.60 to 20.24cm, a range 
of dimensionless times Ty/g/d from 3.481 to 15.747 and a range of generation 
numbers S/(Ty/gd) from 0.034 to 0.846. Small generation numbers (S/(Ty/gd) < 
0.11) resulted in waves that never broke and in small runup heights (R/d < 0.22) 
larger generation numbers (S/(Ty/gd) < 0.37) resulted in waves that broke as they 
climbed up the beach and in larger runup heights (R/d < 0.80). Larger numbers 
(Fr < 0.65) produced waves that broke before reaching the beach, reformed and 
then broke again as they climbed up the beach. Relatively large generation numbers 
(Fr < 0.84) produced waves that were generated broken and propagated broken 
without ever reforming. These waves were essentially bores of finite volume and 
they had the highest runup distances R/d s; 1. Further increases in the generation 
number did not result in larger runup; there was runup saturation. 

Figure 2 presents the surface elevation time history of one series of such waves 
generated with similar generation times but with generation numbers differing by 
an order of magnitude. All waves shown assume the shape of a leading solitary wave 
followed by an oscillatory tail. The second hump seen at about 100 dimensionless 
time units behind the leading wave is the reflected wave generated by the beach. 

The relationship of the runup of the waves generated with a ramp motion (4) 
with the generation number is presented in figure 3. All the wave shown are waves 
that broke only as they climbed up the slope. As expected, the relative runup 
increases with the generation number. Also as anticipated, for fixed generation 
numbers, the relative runup increases with the generation time. 

3.2 Solitary wave-like trajectory. Type S waves. 
In this set of experiments waves were generated using different solitary wave- 

like trajectories. A solitary wave trajectory is a plate motion that produces a solitary 
wave of given H/d at a given depth d. This trajectory is the solution of the equation 

£(*) = j^tanhfc(ci-£(*)), (5) 

where A; = ^/(3/4)iy/d3 and c = y/g(H + d) (Goring, 1978). 
The correct stroke and generation times for solitary waves are S = \f(l&/Z)Hd 

and T = (2/fcc)(3.80 + H/d). f If different values are specified, then the generator 

t It has been verified ibid and in Synolakis (1986, 1987) that these values produce 
true Boussinesq solitary waves V 0.08 < H/d < 0.68. However, depending on the 
response of the generation system fine tuning may be necessary to obtain perfectly 
clean waves. Specifically, T may have to be adjusted by 5%. 
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Figure 3 The variation of the normalized runup with the generation number. Type 

R waves. All waves shown break only as they climb up the beach. 

produces a single long wave followed by an oscillatory tail. A solitary wave-like 

trajectory is a solution of (5) but with different S and T than for solitary waves. 

Figure 4 shows one wave hierarchy that is produced when the generation time 

is kept constant at T = 15.0 and the generation number is varied. These waves 

were generated at depths ranging from d = 11.74cm to d = 25.53cm. Waves gen- 

erated with S/rf < 0.7 are nonbreaking, while waves produced with S/d > 2.0 are 

breaking/reforming waves or bores. 

Many other similar hierarchies were generated. The experiments covered a 

range of dimensionless times Tyfgjd from 3.388 to 55.966 and a range of genera- 

tion numbers S/(Ty/g2) from 0.01 to 1.10. Small generation numbers (S/(TVff2) < 

0.10) resulted in waves that never broke and in small runup heights (R/d < 0.22) 

while larger generation numbers (S/(T\/ff3) < 0.40) resulted in waves that broke as 

they climbed up the beach and in larger runup heights (R/d < 0.75). Larger num- 

bers [Fr < 0.70) produced waves that broke before reaching the beach, reformed 

and then broke again as they climbed up the beach. Relatively large generation 

numbers (Fr < 0.80) produced waves that were generated broken and propagated 

broken without ever reforming. These waves attained the highest runup distances 

R/d » 1. It is really surprizing how well these values correspond to the values 

obtained with the ramp trajectory in section 3.1. Runup saturation was again ob- 

served; inreasing the generation number beyond Fr = 0.80 did not result into higher 

runup heights. 

Figure 5 presents the variation of the runup of the waves generated with the 
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Figure 5 The variation of the normalized runup with the generation number. Type 

S waves. All waves shown break only as they climb up the beach. 

solitary wave-like motion, i.e., equation (5) with the generation number. 

3.3 Comparison with solitary waves. 

It is interesting to compare the data described in section (3.1) and (3.2) with 

data for Boussinesq solitary waves. A comprehensive study of solitary wave runup 

has been presented in Synolakis (1987,1987). Figure 6 presents the variation of the 

normalized runup with the generation number for type R waves, type S waves and 

for solitary waves. It appears that for a given generation number and regardless of 

the generation time and the trajectory used, the solitary waves always attain the 

highest runup distances. This observation hints that solitary waves may indeed be 

a limiting condition, at least in single long wave runup. 

It is important to note that bores of finite volume produce normalized runup 

distances than are even higher than those produced by solitary waves. This is 

anticipated and it is not contradictory to the previous discussion; it is not possible 

to create a solitary wave that is sirnoultanously a bore. The highest generation 

number that produces a solitary wave is Fr = 0.189. On the other hand it is 

possible to create bores with generation numbers as high as Fr = 0.85. Even then, 

there is saturation and further increases in the generation number cannot produce 

higher runup. 

These three observations, the fact that details of the plate motion are important 

in determining the runup, the fact that solitary waves provide a limiting condition 
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for the runup of long waves that break on the beach and the fact that the bore 
runup is saturated, suggest that there might exist some dimensionless number such 
that solitary waves assume the highest value of this number. This question will be 
ex"l'-"-''r! next. 

I 
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10 
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Type K waves 
Type   S  waves 

10 10 
Fr = S/(T>/ff5) 

Figure 6 The variation of the normalized runup with the the generation number. 
Breaking type R, S waves and solitary waves. The solid line is the line of best fit 
for the solitary wave data and it is given by R/d = 1.739.FY0'518. 

4. The runup number. 
In attempting to determine a single parameter to describe the process, it is 

instructive to consider the kinematic analogy of a material particle moving up a 
frictionless inlined plane. Suppose that a particle of mass m starts climbing up 
a ramp of slope tan/? with horizontal momentum mV, As the particle climbs 
up, the component of the body force in its direction of motion acts to reduce its 
momentum. Newton's law implies that dV/dt = —gsin/?. The maximum elevation 
the particle will reach is R = V2/2g. The same result can be arrived at by using 
an energy argument. It is therefore likely that two important motion invariants are 
the particle's energy and momentum. 

The kinematic analogy cannot be carried further; as a wave climbs up a beach 
reflection continuously reduces its momentum, while wave breaking dissipates its 
energy. Friction dissipates both momentum and energy. However, it is well known 
that these processes are slowly acting in extremely long waves such as tsunamis. I 
will therefore proceed to derive momentum and energy scales that can be used in 
the derivation of motion invariants. 

Consider a single long wave with horizontal momentum Mx per unit mass and 
per unit width incident upon the sloping beach.   The wave attains a maximum 
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runup height R. The basic variables are R, g, Mx and they can produce only one 
i      -2 

group, Rgs/Mx- If one uses the kinetic energy per unit mass and per unit depth 

as an independent variable, dimensional analysis suggests the group Rg»/£ *. f 

The horizontal momentum per unit width and per unit mass is given by Mx = 

fy u^dV where "V is the volume occupied by the wave and ux is the horizontal 

velocity. To calculate this integral detailed amplitude and velocity data are needed. 

However since the wavemaker displaces a volume Sd per unit width and since S/T 

is a measure of the velocity imparted to the motion, an estimate of the momentum 

of the wave motion is S2d/T. This leads to a dimensionless momentum invariant 

R = Rgs/(S2d/T) s. This parameter will be referred to as the runup number. 

To determine whether this parameter is motion invariant, it is necessary to ex- 

amine its variation with other independent parameters. Repeating the dimensional 

analysis of section 2 one obtains 

Rgi I      (8/T)d       S      S\ 

*~ (S*d/T)i~'\P'     P/P   ' T^d'd)- W 

Figure 7 presents the variation of the runup number with three of the parameters 

in equation (6) for type R waves. With the exception of bores of finite volume, the 

runup number does seem to vary very little. Figure 8 presents the variation of the 

runup number for type S waves. The runup number variation is greater than it is 

for type R waves; still it only ranges from R •=• 0.8 to R = 1.2. 

Figure 9 presents the runup number variation with the generation number for 

all wave types previously described. % The figure suggests that the runup number 

might not be a true motion invariant, in the sence that it varies from R = 0.7 to 

R = 1.3. (However, the scatter seen is within the margin of experimental error.) 

More important, the figure also suggests that solitary waves have the highest runup 

number R = 1.30, implying that indeed solitary waves may provide a limiting 

condition for wave runup. 

t From this point on, I will discuss the influence of the momentum of generation 

only. The analysis presented in Synolakis (1986) suggests that the motion invariant 

derived from the momentum describes the process further better than the motion 

invariant derived from energy. 

% Figure 9 also includes data for type P waves, which are waves generated with 

a parabolic trajectory. In the interest of brevity these waves are not in discussed in 

detail here. Refer to Synolakis (1986) for tables of data and for a describtion of the 

experiments. 
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Figure 7 The variation of the runup number with the generation number (a), with 
the normalized stroke (b) and with the Reynolds number (c). Type R nonbreaking, 
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generation number (b). Type S breaking waves. 



232 COASTAL ENGINEERING—1988 

6.0 
5.0 
4.0 

3.0 

•*•    2.0 

01 

—   t.O 

0.8 

0.6 

0.4 

-i—i   i ri Tl'l'l 

• TYPE R WAVES 
x TYPE S WAVES 
O TYPE P WAVES 
A SOLITARY  WAVES 

A  £A 
ft*   A*^ 

a* 

-J I I lilt -J l_l_ 

10" 10"' 

FT = S/(T^5) 

10L 

Figure 9 The variation of the runup number with the generation number. Type 
R, S, P waves and solitary waves. 

5. Discussion. 

The data presented clearly demonstrate that solitary waves are a limiting con- 
dition for wave runup on a sloping beach. For a given generation number the solitary 
waves attain the highest runup distances regardless of the generation times and tra- 
jectory type. Also solitary waves have the highest runup number of all long waves 
described in this study. One can only speculate why this should be the case. 

Arbitrary plate motions produce either single long waves that may be non- 
breaking, breaking, or bores followed by an oscillatory train or solitary waves. It 
is reasonable to expect that the runup of a wavetrain will be primarily affected by 
the runup of the leading wave that emerges from the wavetrain. f The momentum 
of this wave is less than the momentum that was imparted to the fluid during wave 
generation. Had all the momentum at generation been used to produce a solitary 
wave, then this wave would have a larger waveheight and it would attain higher 
runup distances than the leading wave emerging from a long wavetrain with the 
same momentum. 

This is a very exciting result. It implies that it might be possible to determine 

f This analysis is consistent with nonlinear dispersive theory that predicts that 
any long wavetrain of positive volume will fission into a series of solitons given a 
sufficiently large propagation distance. 
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the highest possible runup distance that a wave motion of a given momentum dis- 
tribution may attain by simply calculating the runup of the solitary wave generated 
with the same total momentum. Whether this result is true for natural beaches % 
and whether it is true for three-dimensional topographies remains to be established. 
However it does suggest that it might be possible to obtain reliable predictions of 
the coastal effects of tsunamis using solitary wave theory. 

6. Conclusions. 

There are three major conclusions based on the data on the 1 : 19.85 beach. 
1) On a given beach, there are maximum runup values that a wave may attain 
depending on its breaking character, i.e., whether a wave is nonbreaking, breaking, 
breaking/reforming or a bore of finite volume. 
2) The generation characteristics of a long wave determine its runup at finite propa- 
gation distances. In particular if the momentum scale is estimated using the gener- 
ation time and stroke, the resulting dimensionless group, the runup number, might 
be a motion invariant. The runup number for the 1 : 19.85 beach is given by 

Rgi 
£ = »     = 1.023 ± 0.3. 

(S2d/T)i 

The exact value of the generation number depends weakly on the generation time. 
3) Breaking solitary waves have the highest possible runup number among all other 
single long waves, thereby providing a limiting condition for long wave runup. 
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