
CHAPTER 12 

Generalized  Wave  Theory  for   a  Sloping   Bed 

D H  Swart*   and  J  B   Crowley** 

ABSTRACT This paper discusses the development from first 
principles of a first-order solution for non-breaking 
waves on a gently sloping bottom. The theory is derived 
in a similar fashion as was done by Swart and Loubser 
(1978) for vocoidal waves on a horizontal bottom. The 
resulting covocoidal theory was compared to an extensive 
data set for waves over a sloping bottom (Nelson, 1981) 
and is tested for analytical validity. It adheres exactly 
to continuity and the kinematic free surface boundary 
condition, and shows comparable errors in the dynamic free 
surface boundary condition to that found for the better, 
general  horizontal  bed  wave  theories. 

1.   BACKGROUND 

In the past decade increasing emphasis has been placed in 
nearshore and coastal dynamics studies on the measurement 
in the field of wave and current motions, infragravity 
activity, suspended sediment loads and associated shore- 
line changes. These studies have demonstrated that peri- 
odic motions in the nearshore, non-breaking wave area are 
extremely    non-linear. It    has    been    shown    that    various 
time-independent wave properties such as the maximum hori- 
zontal orbital velocity at the bed and the transfer 
function between incident energy flux and longshore 
currents, are predicted reasonably well by using linear 
wave   theory (e.g.   Le   Mehaute   et   al,    1968   and   various 
recent references). However, time-dependent properties 

such as wave shape and orbital excursion are non-linear 
due to the shallow relative depth and asymmetrical due to 
the   sloping   bottom. 

Elegant computer models are being developed to predict 
cross-shore wave-driven movement (Baillard, 1982, Stive, 
1986). These models rely on an accurate prediction of 
wave-driven mass transport, and for this purpose use 
higher moments derived from orbital velocities predicted 
with Stokesian wave theories. Swart and Loubser (1979) 
already showed that this mass transport is a function of 
the    non-adherence    of    these    theories    to    the    continuity 
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equation. In     this     respect     the     cross-shore     transport 
theories would be improved by using a better higher-order 
wave theory, although this would admittedly increase the 
computational effort involved. Swart (1978) derived a 
variable-order cosinusoidal wave theory, the so-called 
vocoidal wave tFeory, from first principles. Swart and 
Loubser (1979) showed that as far as both experimental and 
analytical validity are concerned, vocoidal theory is 
comparable to the best other commonly used wave theories. 
Swart (1982) developed a higher-order Fourier analysis 
which allows the extraction of vocoidal component waves 
from a wave spectrum instead of sinusoidal or cosinusoidal 
waves     as     in     a    usual     Fourier     analysis. Swart     (1987) 
reported on nearshore wave data, gathered in shallow water 
just    outside     the    breaker     zone. In    as    yet    unreported 
analyses of the data, Swart found deviations from the 
observed spectra, which can be shown to be consistent with 
asymmetries associated with the waves shoaling on a 
sloping  bed. 

The purpose of the study reported on herein was therefore 
to investigate the possibility to generalise vocoidal 
theory to make it applicable for waves shoaling over mild- 
ly sloping bottoms. If this can be achieved, it would be 
possible to without excessive computer effort establish a 
technique to extract the non-symmetrical, higher-order 
wave shapes in shallow water and to predict orbital 
motions and higher moments thereof with greater accuracy 
than     with    the     Stokesian     theories. The    potential     to 
improve wave force calculations with asymmetrical waves 
would   also  be   worth  pursuing. 

Section 2 reviews the method of derivation of the new 
theory, after which the analytical and experimental valid- 
ity of the theory is reviewed in Sections 3 and 4. 
Section  5   contains  a   summary of  conclusions. 

2. DERIVATION 

A very similar approach was followed for the development 
of the generalised vocoidal theory than was followed for 
the original derivation of vocoidal water wave theory on a 
horizontal bed. In the following the general assumptions, 
the governing equations, the boundary conditions and the 
derivation are given with regular reference to the hori- 
zontal  bed  derivation. 

General   assumptions 

For the derivation of a generalised water wave theory the 
following  general   assumptions  are  made: 
* only  non-breaking  waves   are  considered; 
* the   water   movement   is  two-dimensional; 
* the   flow  is   frictionless; 
* the    fluid    density   is    invariant    in    time    and    space, 
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that is, the fluid is incompressible and homogeneous; 
* surface tension effects are neglected; 
* the sea bed is mildly sloping, that is, it exhibits a 

slow variation in water depth in the direction of 
wave propagation; 

* the wave motion is periodic and the slope is mild 
enough for relationship (1) below to be approximtely 
valid. 

de(x,t) ae(x,t) ae(x,t) , . 
 dt- =  at- + c  a3T~"                -"(1) 

In expression (1) e(x,t) is any time or space-dependent 
parameter, t denotes time, x is the distance in the direc- 
tion of wave travel, and c denotes wave celerity. The 
second-last assumption above, namely, that of a mildly- 
sloping bed, implies in reality that it is assumed that 
the bed slope is mild enough to assume that the governing 
equations are not affected by the sloping bed. The only 
way in which the formulation used for the derivation of 
the theory is affected is via the boundary conditions at 
the sea bed which will be discusssed in more detail below. 

Governing equations 

The three basic equations which govern the water wave 
problem are the equation for the conservation of fluid 
mass, the equations of motion and the expression for the 
rotationality of a fluid particle. 

Continuity equation 

In the case of an incompressible, homogeneous fluid in the 
two-dimensional situation, the continuity equation can be 
written as 

ox   oz 

where z = vertical dimension positive upwards from the bed 
and u and w are velocity components in the x and z 
directions. 

Equations  of  motion 

For a frictionless fluid the two-dimensional equations of 
motion   are: 

x  -  direction: 

1    5*   ,    5u   .      ou   .      3u        _ ... 
—   -r—   +   -r-r   +    U-r—   +   W-r—   =0 . . . (3 ) p ax      at        ax       az 

z   -  direction: 
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i ap     8w       aw     aw . 
9  +        »     + TT +  u-r- + r- =  0 . . . (4) =      p az      st        ax      az 

where  p  =  pressure   and   p   is   fluid  density. 

Angular velocity 

1 , 8w   8u, ,.- , 
R = 2 fe - ^ •••(5) 

It should be noted that if equation (5) should point to a 
net rotation, this is purely the result of the mathemat- 
ical manipulation. It can be used to derive rotational 
wave theories without considering how much such a type of 
flow i.e. frictionless, "rotatioinal" flow could origin- 
ate. It was shown, however, in e.g. the vocoidal theory 
(Swart 1978) that such an approach is advantageous in the 
development of the theory whilst the net rotation which 
results is in fact negligible (see Bleach, 1982). 

Boundary conditions 
The following three boundary conditions are used: 

Kinematic bed boundary condition (KBBC) 

w(x; z=0)  =  u(x; z=0)tan a ...(6) 
(see Figure 1 for axis-notation) 

Kinematic free-surface boundary condition (KFSBC): 

w(x; z=d+ri) - u(x; z=d+ri)|2 = |ll ...(7) 
ax  at 

where T) = is the surface elevation, measured relative to 
the mean water level. 

Dynamic free-surface boundary condition (DFSBC) 

p(x); z=d+T)) = 0 ... (8a) 

Owing to the fact that the free surface is a streamline, 
one can use Bernoulli's equation for irrotational flow to 
transform   equation   (8)   to: 

Q   =  | +  J^d   tfu(x;   z=d+Tl)   -   c}2   +   f*"(x;   z=d+Tl)}2]   -^ 
... (8b) 

where Q is the constant total energy along the free sur- 
face. 

Further  qualitative  assumptions 

Nelson      (1981)       specifically      found      that      the      various 
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parameters related to What could be termed bulk properties 
such as wave celerity and potential energy are virtually 
unaffected by the slope, whereas time - (or space -) 
dependent parameters are strongly affected. On the basis 
of the vocoidal horizontal bed solution and the various 
results obtained by Nelson (1981) specific, qualitative 
assumptions were made in addition to those already 
outlined above. 

Swart (1979) assumed that the wave profile on a horizontal 
bed is qualitatively given by: 

a = voc(P.X) - n*t ...(9) 
H 

where voc(P,X) = the vocoidal function = variable-order- 
cosinusoidal function 

= (cos2(iX)} p ...(10) 

X = dimensionless time = t/T; Ti*t = dimensionless (with 
respect to wave height) trough depth and P is the wave 
profile parameter.  The only assumption made regarding P 
is that it is equal to or greater than unity. 

Analogously, it is assumed that the following qualitative 
definition is representative of surface elevation for a 
sloping bed: 

-  = h {voc(P,x)-n  }+0.5r {COV(P,X)(1+COS(IIX))-(1-TI  )} 

...(11) 

where cov (P,X) is the newly defined "covocoidal" function 
given by 

cov(P,x) = 1 - voc (P,x) ...(12) 

and r)*t is defined in equation (9) . 

The parameters ha and rQ are unknowns to be determined 
from the solution to the continuity equation, equations of 
motion and the surface and sea bed boundary condi- 
tions. It is assumed that P, the vocoidal wave profile 
parameter, has the same value as in the horizontal bed 
solution. 

It can be seen that this equation for wave shape (equation 
11) has the horizontal bed solution as a special case when 
ra = 0 and ha =1. 

The horizontal orbital Velocity u is given by: 

n/n - *1 M(x)k cosh{M(x)kz}    qa ,  , 
u/c sinh{MTx}k(d+nj}   + ctd+nj ...(13) 
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where M(X) is the vocoidal orbital velocity parameter and 
qais the mass flow due to a sloping sea bed.  When qa = 0 
this equation is the same as that used by Swart (1979) in 
the derivation of vocoidal theory. 

It will be shown below that the effect of slope on the 
variation of M(X) with X is such that the values of this 
parameter as obtained for a horizontal bed solution are 
not valid on a sloping bed. 

It is assumed that the wave celerity c is defined by the 
same equation as for the horizontal bed vocoidal solu- 
tion. 

c2    1 
^~  = ^j  tanh (Nkd) ...(14) 

This "assumption" was checked as part of finding a solu- 
tion to the wave boundary value problem and was found to 
be valid as a first approximation (see Figure 2). 

In solving for the wave boundary value problem as defined 
by equations (2) to (8b), the unknowns to be quantified 
are ha and ra (in equation 11) and M(X) and qa(in equation 
13). 

Solution for wave profile parameters ra  and h 

The DFSBC is used to solve for the optimum ratio ra/  ha. 
The rms value of the deviation over the wave profile 
(CKX<1) from the mean value of the Bernoulli constant Q 
(equation 8b) at the free surface, determines to what 
extent the theory adheres to the DFSBC, i.e. 

E (DFSBC) = —IT.       (Q - Q )2} ...(15) 
""• j=l 

where Q is given by equation 8b and Q is the mean value of 
Q in the area 0< X < 1. 

The value of qa in the horizontal orbital velocity 
component is obtained from the continuity equation and 
the kinematic boundary conditions, namely, 

J1    (!fl - 5) tan « dX ... (16) 
c 

which also yields an expression for w, namely: 

w = w(X) + wmass + u  tan a ...(17) 

In the above subscripts "s" and "b" refer to "surface" and 
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"bed" respectively. In equation (17) w(X) represents the 
cyclic vertical orbital velocity as given in the Appendix, 
with the qualification that the derivatives of r\ and M(X) 
are derivatives of these values for waves on a slope. 
Furthermore w

mass *s the component of the vertical 
orbital velocity which is due to the mass transport qa. 
It can from the continuity equation be shown to be equal 
to 

wmass = JJ- (^) (z/d) —^x—(1+rl/d) ...(18) 

The method of solution now involves finding that ratio of 
r_/h   for  which  the  variation of  E(DFSBC)  is  mini- 

mized. The following initial conditions were used: 

Tc  = 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60. 

H/d   = 0.01, 0.02. 0.05, 0.10, 0.20, 0.50, 1.0. 

tana  = 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.10, 0.20. 

The numerical results for ra/ha were shown by inspection 
to be functions of H/d, Tc and tana. 

ra/ha = G(H/d, Tc, H/d) ...(19) 

The     detailed     curve-fitted     expressions      for     ra/ha     are 
given   in   Table   I. 

The    absolute    values   of   ra   and   ha   are   determined   by   the 
fact   that 

\   -   \   =  H ...(20) 

where subscripts c and t refer to "crest" and "trough" 
respectively.    r\       and r\t     are  known  in terms  of  r 
and ha. Tables lla and lib show typical values of rff 
and h . 

Solution for orbital velocity parameters M(X) and q 

The orbital velocity parameter M(X) is found by rewriting 
the particle rotation R (equation 5) through substitution 
of the appropriate expressions for u and w. In the same 
way as was done by Swart (1979) the orbital velocity para- 
meter was found by defining 

M(X) = RM Ml(X) ...(21) 

where M1(X) is the first-order, i.e. small amplitude, 
approximation   of   M(X)   and   %   is   the   correction   which  has 
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to be made to negate the small-amplitude assumption. It 
is assumed that the expression for ^ in the Appendix is 
also valid for the covocoidal theory- The value of Mj(X) 
is found from the small-amplitude, covocoidal version of 
equation   5,   that   is 

^lill/al  +  4,t2 (n/H)   Mi    (X)   =   0 ...(22) 

It can be shown (Swart, 1988) that at the wave crest (X=0) 
the values of f 
related, namely 
the values of M, for covocoidal and vocoidal theory are 

M  (covoc) = (h  - r )0*5 M  (voc) ...(23) 
lc a    a      lc 

Mj(covoc) is called Mi  herein. 

Swart (1988) solved for Mj(X) from equation (22) for a 
range of initial conditions, namely 

T     =1,2,3,4,5,10,20,30,40,50,60 
h/d  = 0,01,0.02,0.05,0.10,0.2,0.5,1.0 
ra/ha = 0.01,0.02,0.05,0.10,0.20,0.40 

Figure 3 shows a typical variation of Mi(X) for covocoidal 
theory in comparison with Mj(X) for vocoidal theory on a 
horizontal bed.  The value of Ml(X) at x = 0.5 was called 
Mtla and was established from the numerical results for 
the whole range of initial conditions to be 

M.   = g (T ) g (r /h ) ...(24) 
11 a    i      c   2  a  a 

Curve-fitted expressions M.,  given in Table III. 

It is straightforward to find a solution for q . 
Equation (16) was integrated numerically using the Rombert 
integration method for a range of initial conditions: 

Tc    = 5, 10, 20, 30, 40, 50, 60 
H7d     = 0.1, 0.2, 0.5, 1.0 
tana    = 0.01, 0.02, 0.05, 0.10 

By means of curve-fitting an expression was found from the 
numerical   results   for   the   mass   transport   velocity: 

qa 
c(d+T|)   =  R(H/d'   Tc'   tana) ...(25) 

The nature of the function R is given in Table IV. 

This concludes the derivation of covocoidal theory. 
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3.   ANALYTICAL VALIDITY 

As part of the validation of vocoidal water wave theory 
for a horizontal bed Swart and Loubser (1979) performed an 
analytical validity study in which the adherence of vocoi- 
dal theory to the original governing equations and bound- 
ary conditions was compared with that for twelve other 
commonly used water wave theories, namely, linear Airy 
theory, Stokes II and V, three different gravity cnoidal 
theories, Dean's stream function theory, two different 
rotational cnoidal theories and three different approxi- 
mated wave theories. The two free surface boundary 
conditions and the adherence to the continuity equation 
were computed for each of the theories for a wide range of 
initial conditions. 

Vocoidal theory adheres exactly to the kinematic free 
surface boundary condition and the continuity equation. 
Swart and Loubser (1979) showed that the error in the 
DFSBC was for a range of non-linearities covering all 
non-breaking waves either the lowest of all theories 
tested or not statistically different from the theory with 
the lowest error at the 95 per cent confidence level, for 
non-linearity values exceeding 260, which cover inter- 
mediate and shallow water conditions. 

In exactly the same manner as was done in the Swart and 
Loubser study the error in the DFSBC was computed at 41 
equidistant points over one wave period for covocoidal 
theory and a mean error calculated in subsets which were 
chosen to represent waves of roughly equal non-linearity, 
i.e. which had approximately equal wave shapes. The 
results were compared with those for vocoidal theory in 
the earlier study and it was concluded that although 
covocoidal theory exhibits errors in the DFSBC which grow 
marginally bigger as slope increases (see Figure 4), the 
covocoidal theory still had such small errors in the DFSBC 
that it did not differ significantly at the 95 per cent 
confidence level from vocoidal theory, which as stated 
above was shown to be amongst the best theories in the 
Swart and Loubser (1979) study as far as adherence to the 
DFSBC is concerned (see Figure 4). It is therefore con- 
cluded that the theory has a sufficiently sound basis to 
serve as a good first approximation of waves on a sloping 
bed. 

4.   EXPERIMENTAL VALIDITY 

Experimental validation studies for wave theories have 
traditionally used laboratory data (Le Mehaute et al, 
1968; Swart and Loubser, 1979 and Hattori 1986). Good 
full-scale data are nowadays being gathered in the field 
and in mega-flumes. Due to the fact that such data are 
usually for random waves, it is not simple to establish 
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the exact cause(s) of correspondence or non-correspond- 
ences of theory to data. 

Nelson (1981) performed an extensive set of experiments 
for slopes from horizontal to 1 in 10, to test the effect 
of bed slope on wave profile parameters and wave celer- 
ity. His celerity data yield results totally compatible 
with the theoretical predictions in Figure 2. Figure 5 
defines the wave profile parameters tested. Using the 
same range of initial conditions (H/d, Tc, tana) as in 
the Nelson study, theoretical predictions of the para- 
meters defined in Figure 5 were made. The resulting 
correspondences between Nelson's measured data and the 
theoretical predictions in this study are shown in 
Figure 6. It can be concluded that good, qualitative 
correspondence is achieved, although there are some 
quantitative divergences. Nevertheless, wave shape 
changes on beds of different slope are predicted well as a 
first approximation. 

Swart and Loubser (1979) showed that vocoidal theory was 
consistently the best predictor of the thirteen theories 
tested as far as the prediction of horizontal orbital 
velocity is concerned. No good data exists to test syste- 
matically the effect of increasing bottom slope on the 
orbital velocity. Four orbital velocity data sets were 
selected from the Swart and Loubser study which have 
roughly similar initial wave conditions (H/d, T_) and 
for which the bed slope varies between 0 and 1 in 20. 
Although the covocoidal orbital velocity shows some 
improvement over vocoidal theory, particularly as far as 
the variation of orbital velocity under the wave trough 
with distance from the bed is concerned, the improvement 
expected in the absolute value of the orbital velocity did 
not materialise (see Figure 7). Nevertheless, the overall 
correspondence with the data is satisfactory. To improve 
the inconclusiveness as far as orbital velocity prediction 
is concerned, emphasis should be placed on gathering high 
quality orbital velocity data, preferably in the field to 
eliminate the introduction of spurious mass transport, for 
a range of bed slopes. 

5.   CONCLUSIONS 

A new wave theory, the so-called covocoidal wave 
theory, was derived from first principles and is 
valid for all non-breaking waves on a mildly sloping 
bottom. 

No simplifying assumptions were made and the finite 
amplitude condition was preserved. Some approxima- 
tion was, however, introduced because the numerical 
results were represented by means of curve-fitted 
expressions to facilitate easier application. 
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The analytical validity of the theory was established 
to be as good as or better than the better, commonly- 
used horizontal bed wave theories, by virtue of the 
fact that the theory adheres exactly to the KFSBC and 
to continuity and has a minimised error in the DPSBC 
which was shown to not differ statistically from 
vocoidal theory (for tana=0) at the 95 per cent 
confidence level. 

• Experimental validity was established primarily by 
comparison of theoretical predictions with an 
extensive data set collected by Nelson (1981) to 
establish the effect of bottom slope on wave profile 
parameters and wave celerity. Indications on the 
prediction of orbital velocity are inconclusive due 
to the lack of appropriate data. 

• The new covocoidal theory can serve as basis for the 
study of a variety of wave processes on a sloping 
bed outside the breaker zone. 
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TAHLC  I:      equations   Cor determination of  c„ «"d   *»< 

o. 77 

<•'£ 

G3 

Gl 

Cm 

•=   0. 16    (H/d) 

«  5   tano 

«   0.1S(H/d)0-5 

«  0.28(H/dJ-°-''2+1.6 

- 1   +   (ln{2.04(H/d)~'/"l],° 

• Oc exp(-G<j cxp(-CcTc)) 

«  0.48(l-cxp(-<8H/d)) 

«=  1   - cxp{-22(tano)°.s) 

- (Gh- CaJGi 

«= Cj+ CaCb 

•   0.03   ln(tanc)   +  0.275 

«=  0.<24   -f   0.0128(tano)-0-* 

1 

n Gi<H/d  -  0.5rB -  0.1 

If Gn>   1 then Cn=   t. 

o.S 

..(I. 1 J 

..(I. 2) 

..(I. 3) 

..(I. <) 

..(X. 5) 

..(I. 6) 

..(I. 7) 

..(I. 8) 

..(I.   9) 

..(1.10) 

..(I. 11) 

..(1.12) 

..(I. 13) 

for   H/d   <0. 

for  H/d   >0. 

r«/h4 « CfcGn 

Fa «= 0.6€  +   0.06S(lnP) 

Fb « 1   +   1.375P-Fa 

Ke « -0.92(lnP)°-2S  +1.82 

Fd « 1   +  0.2S8<   exp{-0.3S3(P-1)r«) 

r  +h    «=   1   •»• e     (r/ h   ) c      a b a     o 
fd 

S 

s 

..(I.K) 

..(I. 15) 

..(1.16) 

..(1.17) 

..(I. 18) 

..(1.19) 

..(1.20) 

and   h«, are  then   found   from  equations 

(1.15)   and   (1.20) 
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TABLE Ila; Typical values for r( 

1.0 

2.0 

5.0 

10.0 

20.0 

50.0 

.01 .02 .05 .10 .20 .30 1.00 

01 .0041 .0151 .0296 .0325 
.02 .0060 .0160 .0335 .0362 
05 .0077 .0106 .0W2 .cm 
.10 .00(9 .0207 .040i .0461 

.01 .0067 .0167 .0333 .C366 .0345 

.02 .0074 .01*1 .0365 .0426 .0392 

.05 .0003 .0202 .0403 .0463 .0477 

.10 .0095 .0222 .0446 .0557 .0596 

,01 .eo«4 .0211 .0456 .0569 .0650 .0634 
.02 .0092 .0213 .0490 .0647 .0722 .0727 
.05 .0102 .0253 .0541 .0714 .0621 .0699 
,10 .0115 .0275 ,o<.*5 073? .09 :s .1153 

,01 .0117 .0302 .0697 .0991 .1244 .1531 .0169 
.02 .0127 .0329 .0756 .1062 .1364 .1695 .0227 
,05 .0129 .0353 .0613 .1169 .1494 .1909 .0329 
,10 .0151 .0375 .0660 .1250 .1630 .2172 .0456 

.01 .0196 .0556 .1294 .1904 .2406 .2610 .0290 
,02 .0215 .0570 .1403 .2065 .2613 .3066 .0363 
,05 .0211 .0604 .1465 .2192 .2789 .3327 .0529 
,10 .0241 .062$ .1536 .2260 .2929 .3566 .0686 

,01 .0579 .1470 .3161 .3954 .4097 .3697 .0332 
.02 .0625 .1566 .3410 .4266 .4426 .4017 .0437 
.05 .0656 .1661 .3571 .4475 .4669 .4312 .0396 
.10 .0672 .1693 .3616 .4574 .4616 .4573 .0768 

TABLE lib:   Typical values for h 

.01    .02    .05    .10    .20 

o. 
50  1.00 

1.0 

2.0 

5.0 

10.0 

20.0 

50.0 

.01  .9978 .9971  .9967  .9994 

.02  .9977 .9971  .9994 1.0C03 

.05  .9975 .9972 1.0002 1.0016 

.10  .9974 .9974 1.0014 1.0040 

.01  .9977 .9971  .9995 1.0006 .9997 

.02  .9976 .9972 1.0003 1.0020 1.0010 

.05  .9974 .9974 1.0013 1.0036 1.0035 

.10  .9973 .9976 1.0026 1.0064 1.0079 

.01  .9974 .9974 1.0023 1.0063 1.0077 1.0066 

.02  .9973  .9976 1.0037 1.0064 1.0104 1.0096 

.05  .9972 .9979 1.0051 1.0111 1.0144 1.0159 

.10  .9971 .9982 1.0067 1.0142 1.0196 1.0261 

.01  .9970 .9963 1.0092 1.0196 1.0236 1.0216 1.0000 

.02  .9970 .9988 1.0116 1.0233 1.0298 1.0247 1.0004 

.05  .9969 .9993 1.0137 1.0369 1.0343 1.0269 1.0011 

.10  .9969 .9998 1.0157 1.0304 1.0391 1.0339 1.0022 

.01  .9970 1.0033 1.0230 1.0291 1.0225 1.0061 1.0002 

.02  .9971 1.0046 1.0282 1.0323 1.0246 1.0090 1.0005 

.05  .9972 1.0057 1.0308 1.0346 1.0267 1.0099 1.0010 

.10  .9973 1.0065 1.0324 1.0363 1.0262 1.0108 1.0016 

.01 1.0053 1.0173 1.0210 1.0132 1.0059  .9999  .9996 

.02 1.0062 1.0193 1.0226 1.0144 1.0064 1.0001  .9995 

.05 1.0069 1.0205 1.0239 1.0151 1.0069 1.0003  .9993 

.10 1.0072 1.0210 1.0244 1.0154 1.0071 1.0005  .9993 
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TA»LC  III I     Cqu*tt©««  for «S«t.r«l«*tton of Kti. 

«<               -   «cl.   (»•»   «o,«l4tton   <3«l    for   «/<f   -   C.I ...(tll.l) 

«„               -   '•»>   54TC     -'•*' ...lilt.II 

<c               -  0.21   ,, ...1111.1) 

It \a > «c 41"" lo • *c ...Hit.41 

«4            * '  'K;'''' ...Ittt.Ji 

v,          - ««pl-4.3(r,-t|| ..(itt.4) 

w\«c«   r«   l«  4«11A«4   In  lh«  *t>p4n4i* 

tr         • *» « ...nit.i) 

it tt < «. H"« it • V. ...(tll.fi 

"it* • «( ...(HI.!) 

T»»IC   IVl      Co,u«tlon«   tor <«t.r»ln..tton  c>f  o,*/(c(«.n)l 

«4          .   O.tO   -   .<p(-0.S3l   TCR<>|l ...(IV.I) 

0.34   -  0.14   co«   (O.OJ'TC)              (or   Tc«30 ...(IV.3) 

0.40                                                                     tor  Tc>30 

*<         ' *<)   ""'V  *  *.   '"'V*  *   *(   ",/"0>' ...<IV.JJ 

»<S          •   0.755   (I   -   «•(•   (-   0.044TCI) ...(IV.4) 

H^        - 0.45 •  0.J5   (co«'(0.005'Ie)l' -  0.0043TC ...(IV.5) 

t(        —0.75   (cof^COOStTc/JOOl]* -  O.U 

K,          -   1   -   ««p   (-0.044 TCI ...{IV.7J 

k^          -   IJ.IO"'    (K/K^J  -   IOH0"1    (H/^)'-' ...(tV.fj 

•l          • *«*« ...(IV.I) 

«j         •  14.13   .   In  (4«n. •   10"') ...(IV.10) 

*k         - *I»J ...(IV.1I | 

«j           • *£**/<«« «*,»*( I ...(IV.I1I 

»•          • *I-   *k ...(IV.IJ) 

V(».«J    "   *•    '*"• ...(IV.UI 
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APPKHQIX Ai     expressions  for «•« profile*  orbital  velocity and 
celerity parameters   In Vocoldal   theory   (Swart,   1*76  amt 

Svart,   IMd) 

•lave profile parameter 

«/« - voc(P.X) -  «.t .. .(A.I) 

voc(P,X| - u     |co«,<.y)|1' ...(A.J1 

n •   (•p)""-'ll -   («P)"'  •   <«)** -   <«P>"  I ...<A.3J 

t     • P.pP, ...(A.4) 

*P • *pi -("PI -U «»P C^l ...(A.5) 

Rpi- 1 « o.OvJ»(Plt -1|*«.OS « io"'<rll -!)*•" ...(A.«) 

b    - -0.091* 4  2.7U   » 10 *PJJ ...(A.7) 

Pi •    P,j  •  5   (P,,   - P,,l   (Ps  •   '-'>   'or  -«.1<r«<-0.»        ...<A.«1 

P for Pt>-0.S 

»,0 tor'lt<Pl 
'll tor p11  » 'l 

.<A.»I 

r,0 • 1 • 0.05 ot ...(A.10) 

Ur - tj)  (j>* ...(A.11) 

P,, - a, • b, 0r ...<A.12) 

a, —0.11)  -   I.7S7   (j) » 0.0024a  esp  (8.33(3)) ...(A.13) 

bi - 0.1*72 - 0.112  (3) ...(A.14) 

Pu • 1.03 t% • » • 3.3J e«p (-0.10»(ll*rg)| ...(A.15) 

P, • 1 when P^ < - 11 or when P.<1  according  to  the  above. 

'• *  ,ur " Uro> / ' ...(A.I6) 

«ro • O • »0 (f)'-*' ...(A.17) 

1.01 e*p (3.31  (3)]   for It/d > 0.S0S 

• • ...<A.1») 
5.3»                                  for K/d < 0.505 

Pll • »1  »her« j • 50  and K/d - B/d ...<A.H) 
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OrultAl velocity parameter 

. * H(X)  k coah  |H(X)  k al 

<HC-Ht>   |COB (i -J)|» Ht for r2Pi<0.5 

tlcvoc (r,P,,x) for riPi  >0.5 

He for p -   1 

-c.» 

w 'H> t"lh KV<i 

"nH1 
• 

' • V <• 

0.S7  f    • 0.938 

for f    < 0.093 

f 
„        ,   -0.11 
o      a 

I   t 
1 • o.i* fb for fb <0.72 

"i - 
0.72  f.   • 0.6 o for f„ >0.72 0 

'b 

- H  *  n. 

...(A.21) 

rx - 0.4   (1 - P,-°.») ...(A.22) 

"C •  "MnCl ...U.23) 

(P/12  n.cllj*"* for H/d < 0.7 
"cl • ~ ...(A.24) 

(•,,/(2".CI)]'"* for H/d > 0.7 
H/d-0.7 

 2^5i—_, • o.« for 5 < 0.7 

1 ••.»({[) 
R« ., ...(A.2S) 

0.««7 for J > 0.7 

Mt • R„ exp < - 4.2   (Pi - 1)) ...(A.2<) 

Way* celerity parameter 

«£ 
9d 

^    "nNl 

for P^ N,> 1 *  nc/d 

for f    > 0.0S3 

...(A.29) 

...(A.30) 

..(A. 32) 

...(A.34) 
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SPATlAt VIEW 
Oireetlort o« propoyXion 

.« wit* c«4rfily c at tocrtlonA 

TEMPORAL VIEW 
ot location A 

X s cT 

Figure 1: Axis-notation for development of generalised vocoidal theory on a sloping 
bottom. 
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lur - coot 
6£H    - 1.000 
STO   - o.ooo 

«.M     «.W     t.M     «.M     «.M     t.M     %M     I.**     t.M     t.M     I.I*     I.VI 

jur - o.oos 
eex • 1.000 
rro  - o.ooo 

• ••O     t.«    «.*4    «.• I.M   i.«a   i.*4   t.M   I.M   I.I«   i.a 

•o.*- n t«F - o.oto 

! OCX   - o.ooo 

9Q.+- STO    - 0.016 

•  -r-  ,     FV T- -J°°l 1 1 1 
t.M      t.«      t.M      *).M      t.M      !.«•      I.**      t.M      t.M      |.M      1.1*      I. IX 

TANF - 0.020 
KH - 0.998 
STO    - 0.032 

I.U 
c(covoci/c(voa 

Figure 2: Distribution of the ratio of c2/gd for a sloping bed to that for a horizontal 
bed for a slope of 1 in 5 and a range of initial conditions. 
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TANf -0.00 •   H1W   CALCULATED FROM COMMON 21 
B   Ml txl   CALCULATED FROM EQUATION M 

Figure 3: Typical, predicted variation of the orbital velocity parameter M,(X) for 
horizontal bed and for a slope of 1 in 10 for waves with H/d = 0.5 and Tc = 20. 
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fC < 200 
CEM - 2.0244 
STO    - 2.8311 

»    < f C < 500 
¥ «rf   - 2.1311 

STO   - 2.8319 | 
y 

T«# - 0.013J 
CO*    -  S.30M 
STO    - 2.0871 

.•- 

TANF - 0.03M 
CO!    -1.4606 
no  - O.SIM 

flu 

TANF - 0.061* 

GCK - 0.0666 
STO    - 0.5464 

TANF - 0.0»1 
C€K - 0.355* 
STO    - 0.*493 

Figure 4: The error in the DFSBC for covocoidal theory for tana = 0.1, and for vo- 
coidal theory on a horizontal bed, for a range of nonlinearity parameter values. 
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WAVE PERIOD (T) 

\ f\ 
• mo* 

MEAN    WATER   LEVEL 

• 

1 «w« 

RATIO CREST TIME / WAVE PERIOD 

RATIO CREST HEIGHT / WAVE HEIGHT 

CREST SKEWNESS 

TROUGH SKEWHESS 

RATIO WAVE SLOPE / BED SU5PE 

<a » d)/T 

*V oax/( r lain * \iaaxj 

d/<a * d) 

b/(b * c) 

^ nin /<!. b tan«0 

Figure 5: Definition sketch for wave parameters. 
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, TANF -0 0000 
• TANF -0 0153 
, TANF -0 0358 
4 TANF -0 0616 

• TANF -0 0991 

o.o  o.: 

CALCULATED 

T 
0.4 

~\  
0.6 

~I  
0.0 

"1 
1.0 0.2 

T  
0.4 

-I  
0.6 

"I  
o.e 1.0 

PEAK    TIME/T CALCULATED CREST HEIGHT/H 

CALCULATED CREST SKEUNESS 

o.o 

CALCULATED 

1.0 

TROUGH SKEWNES 

Figure 6: Comparison of predicted and observed wave parameters according to defi- 
nitions in Figure 5 for a range of nonlinearity parameter values and bed slopes. 
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TC - 8.6899 
H/O - 0.4343 
FC  - 142.5193 

-I 1  
-4.4  •«.« 

/ 

TANF - 0.0000 
0 - 0.1769 
H - 0.0777 
T    - 1.1600 

1.4  -0.2  0.0   0.2- 

ORBITAL VELOCITY 

~l  
0.4 

"1  

TC 
H/O 
FC 

- 7..4163 
- 0.4367 
- 98.9760 

-i r-—r 
-1.0  -0.0  -0.6  -O 

TC - 7.6194 
H/O - 0.3102 
FC  - 95.2326 

-1 
1.0 

TANF - 0.0100 
D - l.SOOO 
H - 0.6550 
T   - 2.9000 

4  -0.2  0.0   0.2   0.4 

ORBITAL VELOCITY 

IS- 

TANF - 0.0500 
0 - 0.3610 
H - 0.1120 
T    - 1.5000 

I 1 1 1 T- 
-1.0  -0.0  -0.0  -0.4  -0.2  0.0   0.2 

ORBITAL VELOCITY 

2.0 -» TC 

H/D 
FC 

10.2644 
0.3464 
199.2525 

it 
_2±L 

TANF - 0.0147 
0 - 0.2095 
H - 0.0730 
T    - l.SOOO 

o VOCOIDAL 

o COVOCOIOAL 

A COVOCOIOAL HINIKUK 

K DATA 

-O.0  -O.fl  -0.4  -0.2  0.0   0.2   0.4 

ORBITAL VELOCITY 

"I  
0.0 

~1— 
0.0 

-I 
1.0 

Figure 7: Comparison of predicted and observed horizontal orbital velocities under the 
wave crest for a range of bottom slopes and Fc ~ 100; Tc ~ 8, H/d ~ 0.4. 




