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WAVE-CURRENT INTERACTION IN HARBOURS 

Jan K. Kostense, Maarten W. Dingemans and Peter Van den Bosch 

ABSTRACT 

A finite element model has been developed to study the effect of 

currents on the wave propagation in and around arbitrarily shaped har- 

bours of variable depth. The model solves an elliptic mild-slope type of 

equation for time-harmonic waves, and thus circumvents the limitations 

of existing models for wave-current interaction in coastal areas, which 

apply a parabolic approximation. Numerical examples are presented, both 

for schematized cases, as the effect of "rip currents" on normal 

incident waves on a sloping beach, and for a realistic geometry. 

1.  INTRODUCTION 

An effective tool to study the wave penetration into harbours of varia- 

ble depth and arbitrary shape is the mild-slope equation as originally 

derived by Berkhoff (1972). The equation describes the combined effect 

of bottom refraction and diffraction on the propagation of linear gravi- 

ty waves. Booij (1981) suggested how to extend the equation to account 

for dissipative effects. To solve the full elliptic equation, Kostense 

et al. (1986) presented a finite-element model, which has been imple- 

mented with several types of boundary conditions, such as partial re- 

flection, and combined reflection and transmission. They experimentally 

verified their model for a complex harbour geometry, and showed that it 

can be successfully applied, for instance to study the dissipative ef- 

fects of bottom friction and permeable breakwaters on harbour reso- 

nances. The implementation of wave breaking in the model is described by 

De Girolamo, Kostense and Dingemans (1988), while the numerical solution 

methods are discussed by Hurdle, Kostense and Van den Bosch (1989).  The 

Delft Hydraulics, P.O. Box 152, 8300 AD Emmeloord, the Netherlands 

32 



WAVE CURRENT INTERACTION 33 

model has been implemented on two different supercomputers, viz. a Cray 

XMP and a NEC SX/2. Taking advantage of its vector-processors, the 

system of equations is solved quite efficiently, enabling computations 

of relatively large areas. 

Radder (1979) introduced a parabolic approximation of the mild-slope 

equation and thus converted a boundary value problem into an initial 

value problem. The nature of the parabolic approximation is such that 

diffraction and reflection are neglected in the computational main-wave 

propagation direction. Since then, this technique was widely applied to 

study the wave propagation in coastal areas, especially after Booij 

(1981) introduced an extended equation accounting for the effect of 

varying currents. Kirby (1984) showed that Booij used an improper form 

of the dynamic free surface boundary condition, and derived an improved 

equation. 

Apart from coastal regions, currents may also have a noticeable effect 

on the wave penetration into harbours, especially if they are situated 

in tidal inlets, in estuaries, near in- and outlets of power plants, 

etc. Until now this effect could not be incorporated in numerical 

studies, as parabolic methods Inhibit reflections opposite to the main 

direction of wave propagation. Therefore, the finite element model pre- 

sented by Kostense et al. (1986) has been modified to solve the equation 

as derived by Kirby (1984). The model has been given in section 2 and 

the necessary iteration procedure for the wave direction has been 

described in section 3. To illustrate the effectiveness of the model, in 

section 4 a series of computations is discussed, both for schematized 

cases, and for a realistic geometry. 

2.  THE EXTENDED MILD-SLOPE EQUATION 

For irrotional wave motion, the velocity potential $(x,z,t) is written 

as 

*(x,z,t) = f(z,h) 0(x,t) with (1) 

f(2,h)   B   COBhlkChHhz)] 
cosh kh 

With an ambient current field O'(x)  the time-dependent mild-slope 
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equation results as (Klrby, 1984) 

2-£ + (v-tf]5£ + <&rC3-i)  - V«(cc V0) + (if  - k2cc U  = 0 , (3) 
Dt2   l   JDt    Lit g        r       g 

where c, c and k represent the phase velocity w /k , the group velocity 
a -> r 

dw /elk, and the wave number Ikl, respectively, V is the two-dimensional 
r 

gradient operator, and further 

u = u - k-u ,  and o>   = gk tanh kh . (5a,b) 
r r 

Introducing time-harmonic motion, 

0(x,t) = Reh(x)e~iut\  , (6) 

there results 

* [cc ££- - U U £* 1 + 2i«,U £L + [k2cc + «.2- <A iuvtfL = 0 .    (7) 

The equation solved in the finite element model is obtained from Eq. (7) 

by assuming currents which are small compared to the group velocity, and 

thus neglecting the quadratic term in U. Furthermore, at the right-hand 

side of the equation the dissipation term is added (see also Hurdle et 

al., 1989): 

_a 
8x 

[cc l^-l + 2iiM   |^- + |k2cc + if  - if  + iuV-tfL = - io> W(* .     (8) 
jL 9 axjJ      J Sxj  I   '       r      J       r 

The equation is solved by means of standard finite element techniques, 

using triangular elements with linear interpolation functions. 

3.  ITERATION PROCEDURE FOR CURRENT EFFECT 

As the relative wave frequency, u>  ,  is dependent on the unknown 
r 

direction of k, Eq. (8) can be solved only in an iterative manner. To 

elucidate the iteration procedure and its underlying assumptions, the 

case of a traveling wave is considered: 
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.,•*,       >,-»•,     iS(x) /QI ^i(x)  = b(x)  e . (9) 

Inserting this expression into Eq. (8) results into an energy transport 

equation and the eikonal equation: 

<'s>2 - *2 + 5v + T + M{^'vsf - "3 • (10) 

Since the phase function of <p reads x(x,t) = S(x)-ut, the wave number 

vector as resulting from the (extended) mild-slope equation can be 

obtained as 

ic = Vx = VS . (11) 

It is stressed that the absolute value, k, of the initial wave number 

results as a constant due to the separation of variables in Eq. (1), 

which splits off the vertical structure from the wave propagation space. 

Equation (10) shows that in the wave propagation space the absolute 

value of the wave number vector K is different from k due to the effects 

of bottom slope (through Vcc /cc ), of diffraction (through (V b)/b), 
9   9 

and of currents. The unknown direction of k in the Doppler-shift equa- 

tion (5a) is now approximated by the resulting direction of K, resulting 

from the former iteration step. 

The iteration procedure runs as follows. For the first step the relative 

wave frequency u>  in Eq. (5a) is obtained assuming either 0 = 0, or a 
r 

direction of t equal to the incident wave direction. Then Eq. (8) 

yields the solution <ji   and the wave number vector 

ic = VS = Im 
o (12) 

For the second step the direction of K is used as an estimate for the r o 
direction of $  in Eq. (5a) 

K 
-5k 
K 
0 

•0 , (13) 

from which, together with the dispersion relation (5b), u>    and k can be 
r 

solved and substituted into the mild-slope equation. Now the solution 
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I/I , which yields from the second step, is used to determine K and w 

from expressions similar to Eqs. 12 and 13. From hereon the iteration 

process continues till a certain accuracy is achieved. To determine 

whether the stopping criterion is met, the procedure is essentially the 

same as applied for problems involving dissipation, where the magnitude 

of W is dependent on the local wave potential, see also Kostense et al. 

(1986) and De Girolamo et al. (1988). The number of occurrences for 

which the successive iterations of ip    differ more than some relative 
n 

amount from ip       are counted. This is carried out separately for the 
n-l 

real and the imaginary part for each of the mesh points: 

if 
Ue(#n) - Re{<pni) 

and also 

Imty) - Im{$     ) 
n       n—i 

> c then N = N + 1 

if 
Im{<l>J >  e then N = N + 1 

Here e is a predetermined accuracy of a few percents. With N 

occurrences at a total of N mesh points, the iteration is stopped when 

N/N < 0.01. Because the real and the imaginary parts are counted 

separately, deviations may occur in less than 0.5 % of the mesh points. 

To obtain reliable estimates of Vt/j in Eq. 12, a minimum number of about 

12 mesh elements per wave length is required. This condition is 

essentially the same as for bottom friction computations, which also 

involve the assessment of V^i, see Kostense et al (1986). Fulfilling this 

condition, usually about 5 iterations appear to be adequate to obtain 

reliable results of wave-current computations. 

4.0 NUMERICAL EXAMPLES 

As numerical examples have been selected wave propagation over a rip 

current, over a vortex ring and, as an example of a realistic geometry, 

wave penetration in the Malamocco inlet to the Venice Lagoon. 

Rip current 

To demonstrate the application of the model to wave-current 

interactions, computations were performed on the effect of a rip current 
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on the propagation of normally Incident waves on a plane beach with a 

slope of 1/50, a problem that was originally studied by Arthur (1950). 

The velocity field is given by 

U = -3. 60 2 " (•&*)"] F(7b) { F«^ 
0 

Uy= 0.4731 yF(^] F(J^) 

with 

F(tr) = (1/V^i) exp(-cr2/2) 

and is illustrated in Fig. 1. This Figure also shows Arthur's results 

for a wave period of 8 seconds. These results were obtained with the ray 

approximation method, which allows for refraction and shoaling only and 

thus yields unlimited wave heights where the rays cross each other. 

Fig. 2 shows two wave height distributions - without and with the effect 

of wave breaking - obtained from the finite element model. For these 

computations a grid of 74,003 nodes was used. For nonbreaking and 

breaking conditions, the computations required 5 and 8 iterations, 

respectively. The conditions are the same as applied by Arthur. To 

quantify the effect of wave breaking the formulation given by Battjes 

and Janssen (1978) has been used, see De Girolamo et al. (1988). 

Comparing both wave height distributions, the inclusion of wave breaking 

appears to yield more stable results. 

It should be noted that the results in Fig.2 could have been approxi- 

mated satisfactory by parabolic models, see e.g. Kirby (1983). The 

reason to perform these computations was to show that nowadays super- 

computers enables one to cope with relatively large areas, to which one 

would have been compelled by the presence of any reflective construc- 

tions, such as groynes. 

Vortex ring 

The model has also been applied to study the wave propagation over a 

vortex ring in constant water depth. Examples of the occurrence of 
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Figure 1    Typical rip current,   from Arthur  (1950) 
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Figure 2 Rip current; wave height distributions without and with 

breaking 
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vortex rings in nature are the Gulf stream warm-core rings and the 

large-scale vortices along the Norwegian coast. The finite element grid, 

which was used for this study consisted of 114,661 nodes, representing a 

circular area with a diameter of 5 km. The shape of the current velocity 

distribution is essentially the same as applied by Yoon (1987): the 

radial velocity component V = 0 and the tangential velocity given by 

V„ = C exp 
9   2 * R 

3 

for r s R , and 

for r > R . 
l 

The maximum velocity C occurs along the circle r = R . For the numeri- 

cal computation the coefficients were taken to be C= 0.9 m/s, C= 1.0 

m/s, R = 900 m, R = 1000 m, R = 300 m and N = 2. Fig. 3 shows the 
'12 3 6 

current velocity distribution, which rotates clockwise. For a water 

depth of 100 m, a wave period of 10 seconds and an incident wave height 

of 1.0 m the wave height distribution resulting from a computation 

without dissipation is shown in Fig. 4. The computation required 7 

iterations. In the lower part of the graph the wave directions diverge 

due to current refraction, resulting in low waves. This area is bounded 

by a caustic line, where the refracted waves interact with the undis- 

turbed ones. Diffraction in lateral direction precludes unlimited wave 

heights along this line. The consecutive caustic lines in the upper part 

of the graph originate from converging wave directions. 

Malamocco inlet to the Venice Lagoon 

An example from engineering practice of the effect of an ambient current 

is the wave penetration of the Malamocco inlet to the Venice Lagoon, 

which was computed as part of the project to develop a flood defence 

system for Venice. The schematization of the inlet and the bottom 

topography, as well as a representative ebb current field, are illus- 

trated in Fig. 5. The computational grid comprised 249.088 nodes. The 

wave field was computed for a water level of CD + 0.80 m, representing 

mean sea level, and for waves incident from a bearing of 137°N with a 

height of 1.8 m and a period of 8 seconds. 
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vr = 0 

Ve = 
C5 

Ve = C6 exp 
R3 

for r > Ri 
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C5 = 0.9 m/s 
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^3 300 m 

2 

Figure 3 Vortex ring; current velocity profile 
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Figure 4 Vortex ring; wave height distlbution 



WAVE CURRENT INTERACTION 43 

bottom topography 

!  

ABOVE 30.00 
20J00 - 30.00 
BflO - 20.00 
aoo - B.00 
1U30- D.OO 

9X» - aoo 
7J00 - 9.00 
5D0 - 7.00 
100 - 5.00 
IflO - 3.00 

BELOW       100 

Water depth in m 

_1HL T 

current field 

= 1.5 m/s 

Figure 5 Malaraocco inlet to the Venice lagoon area; 

bathymetry and typical ebb currents 
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The results, with and without current, are shown In Figure 6. The wave 

height distribution for the no current case shows a focussing of energy 

along the south side of the entrance channel due to so-called channel 

refraction. This also results in a reduction of the wave height in the 

channel region. The inclusion of the ebb current in the computation 

results in a significant increase in penetration of the inlet. This is 

due to the the effects of current refraction, which offset the effects 

of bottom refraction on the south slope of the channel. The computation 

with current required 4 iterations and was executed on a NEC SX/2. The 

required CPU time was 42 minutes at a performance of 250 Mflop/s. 

5. DISCUSSION 

The effect of ambient currents on wave propagation in and around 

harbours and coastal regions with reflective boundaries can be deter- 

mined by means of a finite element model solving an extended mild-slope 

equation. Contrary to the original mild-slope equation for bottom 

refraction and diffraction only, the extended equation should be solved 

in an iterative way, as beforehand the wave direction in the computa- 

tional region is unknown. Apart from the strength of the currents, the 

number of iterations depends on the number of elements per wave length. 

For stability reasons a minimum number of about 12 elements per charac- 

teristic wave length is required to obtain accurate estimates of the 

gradient of the velocity potential. This number is essentially the same 

as applied for the dissipative effects of bottom dissipation, see 

Kostense et al. (1986). For non-iterative computations without currents 

and dissipation the number of elements is determined by the desired 

accuracy; for engineering purposes usually about 8 elements per 

characteristic wave length are applied. 

The presented numerical examples show that the extended model success- 

fully integrates the effects of diffraction, bottom refraction, current 

refraction, reflection and dissipation. Moreover, it is shown that even 

relatively weak currents may have a significant influence on the wave 

propagation. 
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Offshore conditions: 

Wavehght Hs = 2.0    m 

Direction • 140    cleg 
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Water level = +0.8 m 
flow 
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Wave height in m 

Figure 6 Malamocco inlet to the Venice lagoon area; effect of 

an ambient current field on the wave height distribution 
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of a study of the wave behaviour at the Venice Lagoon inlets, which 

study was commissioned to Delft Hydraulics by Consorzio VENEZIA NUOVA. 
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