
CHAPTER 161 

STATISTICAL INVESTIGATIONS ON DIKE FAILURE 

Ing. P. RoelseU and ir. W.T. Bakkar2) 

1 . ABSTRACT 

For the probabilistic design of dikes it is necessary to know the fail- 
ure probability of the dike as function of the load of the dike (wave 
attack). 

This paper reports on the statistical analysis of the failure behaviour 
of the dikes around the Eastern Scheldt after the storm surge on Febru- 
ary 1, 1953. 

2. INTRODUCTION AND BACKGROUND 

In 1975 the political decision was made in The Netherlands to construct 
a storm-surge barrier in the Eastern Scheldt instead of closing off the 
area completely (Fig. 1). 
This lead to the consequence, that the safety of the surrounding area 
with respect to storm surges would be attained 5 years later than origi- 
nally anticipated; this because new designs had to be made and because 
the construction would be more intricate and time-consuming. 
Thus, the additional decision was made, that the dikes around the 
Scheldt should be partially enheightened, in order to stand a storm 
surge with a probability of occurrence of 1/500 per year. 
To compare: Now the storm-surge barrier is completed (1986) the whole 
area should be safe with respect to storm surges occurring with a fre- 
quency of 1/4000 per year. 
As a consequence, in a short time it had to be decided, whether for each 
dike section along a total stretch of about 140 km the section should be 
enheightened or not. 
Figure 2 shows an example of the kind of dikes; Figure 3 shows examples 
of cross sections, before and after the enheightening. Many of the dikes 
originally had retaining walls on top (Fig. 4, 5), sometimes with a road 
landward of it (Fig. 6). Mostly the dikes consisted of clay. The final 
construction was a sand dike with a clay cover. 
As the advice had to be given rather quickly, the design height was de- 
termined in a simple way, described in chapter 4. 

This paper gives an analysis of the method, showing as well the advan- 
tages as its limitations. 
Using the method, it is essential to know: the probability of failure as 
function of the "lack of crest height", i.e., the difference between the 
real height of the dike and the design height. 
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Pig.   1.   Situation Eastern Scheldt 
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In order to get an impression of this function, it has been calculated 
what should have been (according to the same method) the dike height du- 
ring the surge of 1953/ when many dikes collapsed and 1835 people were 
killed. The number of dike segments which failed in 1953 was compared 
with the total number of dike segments having the same crest height de- 
ficiency. 
In the same way, dikes with different characteristics (with or without 
return wall, steeper or flatter inner slopes etc.) can be compared. 
Of course, the method as used only gives a rough indication. 
One might question, whether the lack of crest height (as calculated in 
the way, given in chapter 4) is decisive for the failure probability. 
In the first place, in order to give the failure probability some mean- 
ing, the dike considered should be more or less uniform with respect to 
the construction. Therefore, the dikes have been classified into various 
categories (chapter 3). 
In the second place, dikes with the same lack of crest height should 
have the same wave attack. 
Chapter 6 deals about this matter; it has to be investigated, whether 
the same lack of crest height implies always the same amount of overtop- 
ping. As the design crest height is determined as well by surge level as 
by wave run-up this is not self-evident. 
In 1953, practically all dike failures were caused by wave overtopping, 
resulting in a failure of the inner slope. Therefore, data as given here 
only applies for this kind of failure mechanism. 

A second question rises, how the extrapolate the results. For Dutch cir- 
cumstances, one possibly might see the probabilities found as a pessi- 
mistic estimate, as the improved dikes have a much flatter inner slope 
than the former ones; on the other hand, a modern dike is a clay-covered 
sand dike, where the former dikes consisted of clay. 
Therefore, at present a more sophisticated method of probabilistic 
design is developed in The Netherlands (Bakker & Vrijling, 1980). 
How imperfect the present results may be, it is considered useful pu- 
blishing these data, as these may give an impression of the strength of 
dikes of a kind which may occur also in other parts of the world. 
A warning should be given, that the data refer to the failure probabili- 
ty of dike sections of a length of the order of some hundreds of metres. 
The failure probability of a dike ring consisting of many sections will 
be much higher, as a chain is a strong as its weakest link (Bakker & 
Vrijling, 1980 and Chapter 7). 

3. AVAILABLE DATA 

Figure 1 shows the investigated area and the various dike sections con- 
sidered. For 273 dike sections the wave run-up in 1953 could be repro- 
duced in a way described in chapter 4, where the inner slope of the dike 
in 1953 was known as well. Some (13) dike sections along the area con- 
sidered had to be omitted because of lack of data. 
The dikes were divided into various categories, using the following 
characteristics: 

with or without return wall; 
with or without road on the crest; 
inner slope flatter than 1:1.5 or not flatter. 
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Fig.   2 Eastern  Scheldt dike 
(without return wall) 
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Fig. 4 Eastern Scheldt dike 
(with return wall) 
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Fig. 3 Cross-section before and after enheightening 
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Fig. 5 Construction of a returnwall Fig. 6 Eastern Scheldt dike with 
return wall and roas behind 
the crest 

Fig. 7a 
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Table 1 shows some characteristics of the dike sections (the dikes men- 
tioned on the second and third line did not have a road on the crest). 

Table 1. Characteristics of dike sections. 

without wall with wall total 

total break- 
through 

total break- 
through 

total break- 
through 

road on crest 

inner slope flatter 
than 1:1.5 

inner slope not flatter 
than 1:1.5 

143 

49 

17 

17 

10 

60 

11 

4 

10 

203 

60 

21 

17 

Total 192 34 81 4 273 38 

4. LACK OF CREST HEIGHT 

The wave attack, which occurred during the 1953 surge can only be hind- 
cast'ed by a rough approximation. After many storm surges, before and af- 
ter 1953, at each dike section along the Eastern Scheldt the level of 
the debris line has been measured. Prom extrapolation, the hypothetical 
height of the debris line after the 1953 storm surge has been derived. 
This height is hypothetical, since it usually surpasses the crest 
level of the dike. 
The extrapolation has been carried out by plotting for each measured 
debris height the wave run-up (difference between storm-surge level and 
debris height) against the wind effect (difference between storm-surge 
level and astronomical tide)(Pig. 7a, b and 8). 

For each dike section, the lack of crest height has been determined, 
being the difference between the hypothetical debris height in 1953 and 
the crest level of the dike. Where seawalls were on the dike, the level 
of the top of the seawall has been taken as crest level (Fig. 9a, b). 

In the following, the lack of crest height in 1953 will be denoted by 

5. STATISTICAL HANDLING OF DATA 

5.1. Dikes without a training wall 

The dike sections have been divided into classes with increasing lack of 
crest height z. The classes have a "band width" of 0.25 m (0 z 0.25 m, 
0.25 z 0.50 m, etc.). When x is the number of dike sections in a certain 
class which break through and n is the number of sections in that class, 
the probability of break-through x/n has been determined as well as the 
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wanted dike height 1953 

Pig. 9 Definition of z for a dike without (a) and with (b) a return 
wall 
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confidence interval with a two-sided confidence limit of 20%. Figure 10 
shows the relation, valid for all dikes without a training wall. Comple- 
te data and elaboration are given by Bakker & Roelse (1981). 
The material still offers puzzling results. Even after elimination of a 
dike section, which collapsed by a second World War gun position, still 
one finds dike sections with a lack of crest height of 2.25 m which did 
not collapse. In one of those cases still the dike ring break through at 
another place (which may have protected the section), but in the other 
case only a large amount of overflow has been reported. In the cases of 
break-through with a surplus of crest height either the wave run-up is 
underestimated, either the crest height overestimated (by reasons, not 
to be traced after 30 years), either a construction in the dike has been 
the reason for dike failure. In all cases (a heavy) overtopping has been 
reported. 
Therefore, the results of the following analysis have more the status of 
"indications" than of "proofs", as correlations found are rather low. 
For instance: the correlation between the lack of crest height z and the 
failure probability appeared to be only 0.35 

Where Figure 10 gives z versus probability of dike failure for all di- 
kes, Figure 11 gives the same kind of result for all dikes with an inner 
slope of 1:15 or steeper. 

For the failure probability Pr (failure) a normal distribution has been 
assumed: 

1     ,z*     -u2 

Pr (failure)=    \/21t'   J     e       du       (1) 
with z* = (z - 2)/o"       -°° (2) 

The values of z   and er have been determined with an existing statisti- 
cal analysis, the "probit analysis" (Finney). 
The calculations have been carried out by IWIS-TNO (Technical physical 
Research). 
The following results were found: 

Table 2. Magnitude of z   and o* for dike sections without walls. 

Inner slope z a 

1:1.5 or steeper 
flatter than 1:1.5 
all slopes 

1.22 m 
2.69 m 
2.25 m 

1.41 m 
1.73 m 
1.76 m 

From this table it shows, that dikes without walls with a slope of one 
in 1.5 or steeper react more predictable than dikes with a flatter 
slope; the probability of failure is much larger. This is also illustra- 
ted by Figure 12, which shows the effect of slope on dike failure more 
into detail. 

5.2. Dikes with return walls 

Consider now dikes with return walls, of which figure 5 and 6 give a 
picture. The height of these walls is of the order of 0.5 to 1 m. Figure 
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13 snows a cross-section and the anticipated action according to the 
designer de Muralt (1913). The turning moment by the impact of the wave 
is neutralized by the normal pressure on the basement plate. 

No failures were found for the 11 dike sections, having an inner slope 
of 1:1.5 or steeper; from the 59 dike sections having a slope flatter 
than 1:1.5/ a number of 3 break through. 
Now dikes with the same crest height with return walls and without have 
been compared. 

As an example, Table 3 shows the comparison of all dikes (regardless of 
inner slope) with or without return walls, classified according to crest 
height deficiency. 

Table 3 All dike segments with z^O 
deficiency. 

classified according to crest height 

class of z with walls without walls 

from to total failure total failure 

0.00 0.25 21 1 29 2 
0.25 0.50 13 0 25 2 
0.50 0.75 3 0 22 5 
0.75 1.00 3 1 18 6 
1.00 1.25 2 0 9 4 
1.25 1.50 4 1 12 3 
1.50 1.75 1 0 10 4 
1.75 2.00 1 0 7 3 

Total 48 3 132 29 

Table 4. All dike segments without roads (inner slope 1:1.5 or steeper) 
classified according to crest height deficiency. 

class of z with walls without walls 

from to total failure total failure 

0.00 
0.25 
0.50 
0.75 

0.25 
0.50 
0.75 
1.00 

3 
4 

1 

0 
0 

0 

10 
5 

4 

2 
2 

2 

Total 8 0 19 6 

Data at the same line refer to dikes with equal crest height deficiency 
z, where, as mentioned, in the case of return walls z refers to the up- 
per side of the return wall. 
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The statement has been tested, whether both groups being compared belong 
to the same population. Using Cochran's test (cf. Everitt, 1977), a pro- 
bability of 5.3% was found, that this was the case; therefore with this 
confidence limit one might conclude that dikes with return walls are 
significantly stronger. 
Using partial datasets (eliminating dikes with roads on the crest and 
discrimination on inner slopes) it was found with a confidence limit of 
3%, that dikes (without roads) with an inner slope 1:1.5 or steeper with 
a .return wall were stronger than dikes with the same value of z without 
a return wall (Table 4). 
However, evaluating these results, one has to keep the low correlation 
between dike height deficiency and failure probability in mind. 

6. RELEVANCE OF THE CREST HEIGHT DEFICIENCY FOR THE LOAD ON THE DIKE 

Let H be the mean wave height, surpassed by 50% of the waves. In the 
case of a Rayleigh distribution of the waves, H equals: 

H = 0.59 Hs (3) 

where Hs is the significant wave height. 
From Fig. IV.5.4 from TAW (1972) the following approximating relation- 
ship between dimensionless amount of overtopping q* and dimensionless 
dike height K* can be derived (Fig. 14): 

q* 

in which: 

10-(K* - 1,5)/5 (4) 

q 

10   JgH3' 
(5) 

Here q is the amount of overtopping per unit of time and per unit of 
crest width and g the accelaration of gravity. 
Furthermore K* is per definition: 

K* = K(cotano<)3/2/H (6) 

in which K is the crest height above the still water level. 

In the range considered the amount of wave overtopping appears to de- 
crease practical negative-exponentially with the crest-level. 
Assuming the debris height analogous to the 1%-wave run-up (according to 
dutch measurements) and assuming the 2% wave run-up equal to 8 Hs tanoC, 
where ot is the revetment slope; furthermore assuming the 1% wave run-up 
7.5% higher than the 2% wave run-up, from (3) one finds: 

ydh = N.H tana (7) 

with: 

N   = 14.6 (8) 

where Ydh ^s  the height of the debris above the still-water level. 
The dike height deficiency equals: 
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z = ydh -  K W 

Using (5), (6), (7) and (9), one may write (4) as: 

q = A . E\/n   .   eBz/H (10) 

in which: 

„ _  1 \F°^   . ^-(Wcotanoc1- 1,5)/5 00 
2-7T 7T 

B = (cotan«)3/2 . (ln i0)/5 02) 

Thus it shows, that the dike height deficiency z does not determine in 
its own the amount of overtopping, but that this is also a function of 
the wave height. 
From Figure 15 it shows, that for a large significant wave height and a 
small deficiency of crest height the deficiency determines the amount of 
overtopping quite well (it does not depend much on the wave height). 
However, when the deficiency is of the order of the wave height the lack 
of crest height gives blurred information on the amount of overtopping. 
Thus dikes with the same (large) crest height deficiency may have had a 
quite different amount of overtopping. However, other ways of calcula- 
tion of amount of overtopping did not give more reliable results. 

7. EXPERIMENTS 

Because of confined financial means the only experiments with respect to 
this subject were carried out with regular waves. Therefore, from these 
experiments only qualitative indications can be derived concerning the 
amount of overtopping of dikes with a return wall compared to dikes 
without a wall. 
The experiments were carried out by Doodeman (1985) on Delft Technologi- 
cal University. 
The experimental set-up, simulating a scale 1:10 with respect to proto- 
type, is shown in Figure 16. In a wave flume with waterdepth (for 3 suc- 
cessive sets of tests) of 0.45 m, 0.425 m and 0.40 m respectively a 
slope 1:3 was mounted up to a horizontal level of 0.4613 m above the 
bottom of the flume. Each test was carried out in three options: 
a. with a return wall with a height of 10 cm above the original "dike"; 
b. with an enheightening of the dike with 10 cm, using the same seaward 

slope; 
c. with an extension of the slope in upward direction in order to meas- 

ure the wave run-up. 
For various wave periods, simulating waves of 3 to 5 sec. in prototype, 
the wave-run up R was determined, resulting in an average value of 1.8 
H; here H denotes the wave height. 
Furthermore, the amount of overtopping q was measured. In a dimension- 
less plot, one might display q/(H y'gH") versus z/H, where z is the crest 
height deficiency. This has been done in Figure 17, where the constant g 
has been omitted. H is given in m and q in 1/ms. When z is of the order 
of the wave height one finds a truncation of the exponential increase of 
the run-up as suggested by (10). This will be clear, as no more dis- 
charge as contained in the wave crest will overtop. 
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Apart from some minor overtopping of the return wall for negative values 
of z (lowest picture of Fig. 17) Doodeman finds less overtopping for 
dikes with a return wall than for dikes without for the same value of z. 
Compare (for dikes without walls) the constants A and B according to 
(11) and (12) on one hand and according to the experiments on the other 
hand. It should be kept in mind that in the case of Doodeman the "debris 
height" would only be at a level of 1.8 H instead of 14.6/3 = 4.87 H for 
irregular waves (see (7)). Substituting of N=1.8/tanot= 5.4 for N in 
Doodeman's case one finds from his experiments: A = 0.00420 \/m/s. For B, 
which should be 2.39 for irregular waves, Doodeman finds 4.38. This 
means, that eqn (10), thus applied, gives for regular waves too high 
values for the overtopping discharge when the crest height definciency 
is small and too small values in the opposite case. 

8. FAILURE PROBABILITY OF A DIKE RING 

The probability of failure of a dike section differs from the probabili- 
ty of failure of the dike ring, of which the dike section forms a part. 
Bakker & Vrijling (1980) give an outline of a probabilistic design of 
sea defences. In order to give an idea of the effect of the length of a 
dike on the necessary design height, in the following a simple schemati- 
zation is used. 
a. With respect to the water level, an exponential probability distribu- 

tion is assumed; 
b. As the wave run-up is about proportional to the wind velocity for 

small fetch length and the probability distribution of the wind velo- 
city is negative-exponential, a negative-exponential distribution of 
the wave run-up is assumed. The above statement is valid in the East- 
ern Scheldt when hydraulically deep water can be assumed; this is the 
case where a tidal channel occurs in front of the dike (Fig. 1). How- 
ever, often shoals at about mean sea level are found in front of the 
dikes. In that case mostly the waves will be about proportional to 
the water depth and the probability distribution of waves an wave 
run-up will be conform the one of the water level, i.e. (again) nega- 
tive-exponential . 

c. Failure could be assumed, when the wave run-up surpasses the crest 
height; however, several additional inaccuracies are taken into ac- 
count, as the uncertainty with respect to the strength of the dike 
(as treated before), the uncertainty with the exact constants in the 
formula for the negative-exponential distributions mentioned above, 
uncertaintly with the exact crest level etc. 
With respect to the inaccuracies mentioned ad c, a normal distribu- 
tion is assumed. 

d. In the following it will be assumed that all sections of the dike 
ring in principal are attacked by the same wave run-up; however, the 
unaccuracies mentioned ad c can be different for each dike section. 

Mathematically, the formulation will be, that it is assumed, that a dike 
failure occurs when a stochastical quantity z (the wave run-up) surpas- 
ses a magnitude K (crest height) at one of n sections; here z is the sum 
of a stochastical quantity x, "being the same for all sections and having 
a negative exponential distribution, and a stochastical quantity 
y, having a Gaussian distribution with expectation zero and standard 
deviation o": 
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£ = — + L '13' 

Pr(x>x) = V"^  (x>x0) (14) 

pr(y>y) = I-P (y/tf) os) 

in which: 

1   ,y -t2/2 
P(y) = ==   e     dt (16) 

\Z29T-OT' 

In (16), P(y) is the Gaussian probability function with expectation zero 
and standard deviation 1. 

It is assumed, that x and y are statistically independent. 
Then the failure probability can be defined as: 

Pr(failure) = pr (z^ax>K) (17) 

with: 

±max £ + Zmax (18) 

As calculations in the appendix show, taking the number of sections and 
the inaccuracies y into account increases the failure probability with a 
factor n' .exp( A.2o"2/2) . Here n' is a number smaller than the number of 
sections n; the value of n" is a function of n and Ac; it is displayed 
in Figure 18. The ratio n'/n decreases, when A c decreases, i.e., when 
the standard deviation of inaccuracy y decreases with respect to the 
characteristic height 1/A , of the exponential distribution of x. 
The amount of n' is smaller than n, because also when more sections col- 
lapse during one surge, only one dike-ring failure happens. 
Now let K be the necessary crest height of a dike, taking only the dis- 
tribution of x and the failure of one dike segment into account. Accor- 
ding to (14) this includes a failure probability of AQ.expf-Ax). 
If one does not want to exceed this probability and still take as well 
the inaccuracy y^ as the number of sections into account, the dike should 
be enheightened with Ac*2/2 + (In n')/A- 

9. CONCLUSIONS 

The following indications deal about dikes and return walls with con- 
struction an3 materials as found in the Netherlands in 1953: 
a. During the storm surge of 1953 dikes with a steep inner slope (1:1.5 

or steeper) with return walls showed a smaller failure probability 
than dikes without return walls, when the shortage of crest height 
(as defined in ch. 3) was the same . 

b. On the average, the dikes could stand a crest height deficiency of 1 
to 2 m dependent of the inner slope. This holds for sections of a 
length of ca. 0.5 km. For a dike ring the strength of the weakest 
dike section will be decisive for the strength of the dike. 
Ch.8 gives a way to bring this effect into account. 
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APPENDIX 

Calculation of n' from n 

Let the probability of x be given by (14). 
The probability of failure under the condition that y<ymax<y

+dy equals: 

Pr (failure | y<ymax <y + dy) = Pr(x>K-y) (A1) 

According to (14) this probability equals: 

Pr(failure|y<ymax<y + dy) = Ace"*^-^ (A2) 

Thus the total failure probability is the probability, quoted in (A2), 
multiplied with the chance on y<ymax<y 

+ dv' integrated over all possi- 
bilities of y: 

+ 00 

Pr(failure) = f   P^e-M*-?) .p(ymax) 
dy <A3> 

-« 
where p(ymax) i-s  tne probability density function of ymax

: 

PtVmax) = ~   [Pr(ymax<y)l (A4) 
dy 

with: 

Pr(lmax< y> = (P(y/«>) n (A5) 

From (A4) and (16) one finds: 

d 
P(ymax> = —C (P(y/C))

n] (A6) 
dy 

P(ymax) = —(P(y/tf))
n_1. Z(y/0) (A7) 

a 

in which: 

1   -y2/2 
Z(y) =   e (A8) 

2TT 

Z(y) is the probability density function of the Gaussian distribution. 
Substitution of (A6) into (A1) gives: 

Pr(failure) =   e~'lK J (P(y/S))n~1.Z(y/C).e*y dy        (A9) 

Replacing y/o" by u yields: 

pr(failure) = Aoe'^.f (n,A<5) 

+oo 

f(n,Ao-) = n. J (P(u) )n-1.Z(u) .e^,udu 
. -co 

The function f(n,Ao) is calculated numerically and given in Figure 18. 
More details are given by Bakker (1981). 




