
CHAPTER 144 

PREDICTION OF WAVE RUNUP AND RIPRAP STABILITY 

By Nobuhisa Kobayashi1, M.ASCE and Jeffrey H. Greenwald2, A.M.ASCE 

ABSTRACT: A numerical model has been developed to predict the wave 
motion on a rough impermeable slope and the hydraulic stability and 
sliding motion of armor units under the action of a specified normally- 
incident wave train. The developed numerical model has been compared 
with riprap test results to calibrate and verify the model. 

INTRODUCTION 

The present design practices of coastal structures protected with 
armor units such as breakwaters and revetments are based on hydraulic 
model tests and empirical formulas although our quantitative under- 
standing of the problem has been improving steadily (4,23,26,29,30). 
Further improvements of the present design practices will require 
reliable numerical models which can complement hydraulic model tests 
since large-scale model tests with minimum scale effects are expensive 
and time-consuming. Furthermore, some of the important quantities 
such as the spatial variation of the stability of armor units are very 
difficult to measure in detail. 

As a first attempt, Kobayashi and Jacobs (8) developed a simple 
analytical model to predict the flow characteristics in the downrush of 
regular waves on a uniform slope and the critical condition for initia- 
tion of movement of armor units. This simple model gives a physical 
insight into the mechanics of armor stability under the action of 
surging breakers but is not reliable enough to be applied to actual 
design problems. 

In order to improve the analytical model, Kobayashi et al. (12,13, 
14) have developed a numerical model to predict the flow character- 
istics in the uprush and downrush on a rough impermeable slope and the 
resulting hydraulic stability and sliding motion of armor units under 
the action of a normally-incident wave train. Comparison with avail- 
able riprap test data (1,10) has indicated that the numerical model can 
predict wave runup, rundown and reflection as well as zero-damage wave 
heights for uniform and composite riprap slopes if some of the input 
parameters required for the numerical model are calibrated. 

In order to calibrate and verify the developed numerical model more 
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extensively, Kobayashi and Greenwald (15) have conducted eight test 
runs in a wave tank using a 1:3 glued gravel slope with an impermeable 
base. For each run with the specified incident wave train generated 
in a burst, measurements have been made of the free surface oscillation 
at the toe of the slope, the waterline oscillation on the slope, the 
temporal variations of dynamic pressures on the base of the slope and 
the displacements of loose gravel units placed on the glued gravel 
slope. The calibrated numerical model has been shown to be capable of 
predicting the measured temporal variations of the hydrodynamic quanti- 
ties and the measured spatial variations of the amount of the riprap 
movement. 

In this paper the mathematical and numerical backgrounds of the 
numerical model developed by Kobayashi et al. (12,13,14) are critically 
reviewed to indicate possible future improvements of the numerical 
model. Then, the riprap experiment conducted for calibrating and 
verifying the numerical model is described together with the test 
results which have not been presented by Kobayashi and Greenwald (15). 
Furthermore, additional experiments required for further calibration 
and verification of the numerical model are discussed in light of the 
limitations of the experiment conducted by Kobayashi and Greenwald 
(15). 

WAVE MOTION ON A ROUGH SLOPE 

Wave uprush and downrush on the seaward slope of a coastal struc- 
ture protected with armor units are similar to wave motions in the 
swash zone on a beach although the structural slope is normally steeper 
than the beach slope. It is noted that the surf similarity parameter 
(3) is widely used to describe the gross wave characteristics on the 
structural and beach slopes . Use may hence be made of the hydrodynamic 
models developed for breaking waves on beaches which have been investi- 
gated more extensively as reviewed by Peregrine (21). The finite- 
amplitude shallow-water equations including the effects of bottom 
friction are suited for predicting the movement of the waterline on the 
rough slope of the coastal structure if the slope is relatively mild 
and impermeable. The waterline movement on the slope determines wave 
runup and rundown and affects the hydraulic stability of armor units 
as shown by the simple analytical model developed by Kobayashi et al. 
(8,11). However, the finite-amplitude, shallow-water equations based 
on the assumption of hydrostatic pressure are not capable of describing 
detailed two-dimensional behavior of overturning waves (17). 

Limiting to the case of a normally-incident wave train on the rough 
impermeable slope shown in Fig. 1, the finite-amplitude, shallow-water 
equations including the effects of bottom friction may be written as 

§|: +JL(n-u-) = o (i) 

^(Vu,)+^(h,u,2)_gh, g;.!^ (2) 

in which t' = time, x' - horizontal coordinate at the still water 
level (SWL) which is taken to be positive in the landward direction 
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with x' = 0 at the toe of the slope, h' = water depth below the free 
surface, u' = depth-averaged horizontal velocity, g = gravitational 
acceleration, r)' — vertical displacement of the free surface relative 
to SWL, rJ - bottom shear stress, and p = fluid density which is 
assumed constant neglecting the effects of air entrainment (5). The 
bottom shear stress may be expressed as 

-Iff u' u' (3) 

where f' = friction factor associated with the rough impermeable slope 
which is simply assumed constant. It should be noted that £' will 
depend on h' if Manning formula is used to express T' (18,19). The 
empirical formula proposed by Madsen and White (16) nas been found 
satisfactory in estimating the constant value of f for riprap slopes 
although additional calibration may be required (13,15). 

If the permeability of the underlayer below armor units is not 
negligible, the flow over the rough permeable bottom and the flow in 
the permeable underlayer are coupled through the mass and momentum 
fluxes between these two flow regions. Kobayashi (11) formulated this 
coupled problem and performed an order-of-magnitude analysis to evalu- 
ate the degree of the effects of the permeable underlayer. On the 
other hand, Hannoura et al. (5) analyzed the flow inside a permeable 
breakwater using the measured pressure on the rough permeable slope as 
input. Because of the assumption of the impermeable underlayer, the 
present numerical model is not applicable to permeable breakwaters such 
as reef type breakwaters (2). 

Denoting the characteristic period and height associated with the 
normally-incident wave train by T' and H', respectively, the following 
dimensionless variables are introduced 

t-^7 

T'igir" 

v,  h' *-£• 

u' 

IgH' 

dt- = H' 

(4) 

(5) 

in which z' — vertical coordinate which is taken to be positive upward 
with z' = 0 at SWL as shown in Fig. 1, and d' - water depth below SWL 
where the incident wave train may be specified conveniently. Limiting 
to the case where the incident wave train is well-behaved without any 

Fig. 1 - Normally-Incident Wave Train on Rough Slope 
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breaking at the toe of the slope, d' is taken to be the water depth 
below SWL at the toe of the slope as shown in Fig. 1. Substitution of 
Eqs. 3-5 into Eqs. 1 and 2 yields 

a   „ , a   ,.  2 h2 

with 

^ (hu) + ^ (hu +£-)-- 0h - f|u|u (7) 

f - | a f'   ,   a - T' 1^7 (8) 

8  -  J~2T£      £ = — a  tan «' (9) 

\2n 

in which f = normalized friction factor, a — dimensionless parameter 
related to wave steepness, 0 - normalized gradient of the slope, and £ 
= local surf similarity parameter with $' — local angle of the slope. 
For the regular wave incident on a uniform slope of constant 8' as 
shown in Fig. 1, £ defined in Eq. 9 reduces to the surf similarity 
parameter introduced by Battjes (3). The numerical model can easily 
be applied to examine the effects of the slope geometry on wave runup 
and armor stability by varying the local slope angle 8' along the 
slope. Composite slopes approximating the characteristic S-geometry of 
matured breakwaters have been shown to increase armor stability and 
reduce wave runup as compared to uniform slopes (4,9,10). 

Eqs. 6 and 7 are solved numerically in the time domain to compute 
h and u as a function of t arid x for given 8 (i.e. , £), f> initial and 
boundary conditions. The initial conditions for h and u are taken 
such that h = normalized depth below SWL (i.e. , rj—0) and u=0 at t=0 
for the region x>0 on the rough slope, corresponding to the conditions 
before the arrival of the incident wave train at the toe of the slope. 
In general, the computation in the time domain can incorporate non- 
linear effects easily relative to the computation in the frequency 
domain. However, for the incident regular wave train, the time-domain 
computation starting from the assumed initial conditions at t=0 needs 
to be continued until the state of periodicity is reached. For the 
computation made by Kobayashi et al. (12,13,14) the transient duration 
has been limited to the relatively short duration 0<t<5 where the 
normalized period of the incident regular wave train is unity. 
Furthermore, the time-domain computation will become expensive if the 
number of individual waves in an incident irregular wave train becomes 
large. 

The landward boundary on the rough slope is located at the moving 
waterline where the water depth h is essentially zero, assuming that no 
wave overtopping occurs. However, it is desirable to generalize this 
boundary condition so as to allow wave overtopping over the specified 
crest geometry of the structure since some wave overtopping is normally 
accepted in designing the crest geometry (29). If wave overtopping is 
to be allowed, it will be necessary to apply a discharge relationship 
at the point of overflow by assuming the similarity between wave 
overtopping over the crest of the coastal structure and overflow over 
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a weir in open channel flow (18). 

At the seaward boundary located at x=0 it is normally required for 
practical applications to specify the incident waves as input and 
estimate the reflected waves originating from the region x>0 on the 
rough slope. This implicitly assumes that the reflected waves will not 
modify the specified incident waves. In order to derive an appropriate 
seaward boundary condition, Eqs. 6 and 7 are expressed in the corre- 
sponding characteristic forms (13). Then, the equation for the 
seaward-advancing characteristics originating from the region x>0 is 
used to obtain a relationship for the values of u and h at x=0. Since 
an additional relationship is required to find u and h at x=0, the 
normalized total water depth at the seaward boundary is expressed as 

h - dt + r?i(t) + r/r(t) at x = 0 (10) 

in which t?£ and rjr are the free surface variations normalized by H' at 
x-0 due to the incident and reflected waves, respectively. The super- 
position of t)^ and r)r at x-0 implicitly assumes that nonlinear inter- 
action between the incident and reflected waves is negligible in the 
vicinity of the seaward boundary. The incident wave train at x-0 is 
specified by prescribing the variation of ^(t) with respect to t>0. 
r/r(t) may be computed approximately from the value of the seaward 
advancing characteristic variable at x=0 using the relationship between 
u and r) applicable for linear long waves. This approximation is not 
crucial as long as wave reflection from the rough slope is small and 
r\r is negligible in Eq. 10. The practical difficulty associated with 
the seaward boundary condition is that the design incident waves are 
normally specified in terms of the wave energy spectrum or the signifi- 
cant wave height and period rather than the temporal variation of the 
free surface associated with the incident wave train which is directly 
related to the sequence and group of individual waves in an incident 
irregular wave train. Furthermore, for the incident regular wave train 
with given H' and T' in the water depth d' f?^(t) needs to be estimated 
using an appropriate wave theory. To specify r;^(t) at x=0 for given 
H', T' and d' Kobayashi et al. (12,13,14) have used cnoidal or Stokes 
wave theory although these wave theories are not really consistent 
with the finite-amplitude shallow-water equations. If cnoidal wave 
theory is applied, it is more consistent to use Boussinesq equations 
(27). In fact, Pedersen and Gjevik (20) developed a numerical model 
based on Boussinesq equations for computing runup of a non-breaking 
solitary wave. 

For the specified initial and boundary conditions Eqs. 6 and 7 are 
solved using an explicit dissipative Lax-Wendroff finite-difference 
method developed by Peregrine and co-workers (6,7,18,19) for simulating 
spilling-type breakers and resulting swash oscillations on gentle 
slopes. In this numerical method, the front of a breaking wave becomes 
almost vertical without any separate treatment of the wave front but an 
artificial dissipative term needs to be included to reduce numerical 
oscillations in the vicinity of the front caused by discretization. 
Use is made of a finite-difference space and time grid of constant 
space size Ax and constant time step At in which the values of Ax and 
At are determined considering the numerical stability criterion of the 
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adopted explicit method and the desired spatial and temporal accura- 
cies. Svendsen and Madsen (28) showed that this numerical dissipation 
would not be required if the effects of turbulence generated by wave 
breaking were included in the numerical model. Nevertheless, the 
explicit dissipative Lax-Wendroff finite-difference method has been 
tested and is relatively easy to apply for simulating the moving 
waterline on the relatively mild slope where the present computation 
based on Eqs. 1 and 2 may be appropriate if (tan0')2«l. The major 
contribution by Peregrine and co-workers (6,7,18,19) is the development 
of the predictor-corrector-smoothing procedure dealing with the moving 
waterline although the details of this procedure are somewhat intuitive 
and may still be improved (13). As a whole, the adopted numerical 
method has been found to be very satisfactory although the CPU time 
for a typical case using 200 nodal points and 2,000 time steps per 
wave period is approximately 30 sec per wave period (13). 

HYDRAULIC STABILITY AND MOVEMENT OF ARMOR UNITS 

The finite-difference solution of Eqs. 6 and 7 yields the values 
of u and h at each of the space grid points along the slope at each 
time level starting from t=-0. In order to compute the normalized 
horizontal water particle acceleration, du/dt, at each space grid 
point using the computed values of u and h at given time level, Eq. 7 
is rewritten as 

f|u|u 

- -r- (ID 
du 
dt 

du   du 
at + US 

ah 
ax 

in which use is made of a central-difference approximation of 3h/3x. 
The computed values of u and du/dt at each space grid point at given 
time level are then used to estimate the hydrodynamic forces acting on 
an individual armor unit on the rough slope. 

The hydraulic stability analysis of stationary armor units 
performed by Kobayashi et al. (12,14) is similar to the simplified 
analysis of Kobayashi and Jacobs (8) which was limited to the downrush 
period only. Fig. 2 shows the forces acting on a stationary armor 
unit on the l:cot#' slope. Limiting to the case of (tan0')2«l, it is 
assumed that the drag force Fp and the inertia force Fj act upward or 
downward parallel to the slope, whereas the lift force FL acts upward 
normal to the slope since the flow tends to be parallel to the slope 
as shown in Fig. 2.  On the other hand, the submerged weight Wg acts 

Fig. 2 - Forces Acting on a Stationary Armor Unit 
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vertically downward. The expressions for Fp, Fj, FL and Wg are given 
by Kobayashi and Jacobs (8) except that Fp is proportional to |u'|u' 
in this analysis for both uprush and downrush periods. The expressions 
of the hydrodynamic forces Fp, Fj and F^ include the drag, inertia and 
lift coefficients denoted by Cp, C^ and CL, respectively. These 
coefficients need to be determined experimentally on the basis of the 
simultaneous measurements of the fluid velocity and acceleration and 
the resulting hydrodynamic forces which will be extremely difficult 
for an armor unit located on the rough slope under the action of 
breaking waves. Furthermore, the temporal variations of the hydrody- 
namic forces can be more complicated than those based on the adopted 
expressions, judging from the simpler measurements of the lift force 
on a single sphere near a plane wall in well-behaved oscillatory flow 
reported by Rosenthal and Sleath (22). Tentatively, Kobayashi et al. 
(12,14,15) have assumed that for riprap units Cp = 0.5, Cy = 1.5 and 
CL - 0.18 -0.4 in which CL is varied in this range on the basis of 
available scattered data on CL summarized by Sleath (25). 

The stability condition for a stationary armor unit against down- 
ward or upward sliding or rolling are expressed as 

|F + F - W sin0'| < (W cos«' - F ) tan^ (12) 

in which rj> - frictional angle of the armor units and $ - 50° for 
angular riprap units (8,12,14,15). Limiting to the case of Cp>(CL 
tan^), Eq. 12 can be rearranged as 

H' fa' I
-1

/
3 

s  s-1 (jogsj        R 

where Ns - stability number, s = specific density of the armor unit, 
W = weight of the armor unit, p  - fluid density, and Nj^(t,x) = dimen- 
sionless function involving u and du/dt which depends on t and x 
(12,14).  Eq. 11 indicates that du/dt may become very large at the 
wave front where h decreases rapidly with x.   The computed fluid 
accelerations have been found to be as large as 4g which may not be 
unrealistic in comparison with the computed accelerations as large as 
5g or 6g beneath overturning wave crests obtained by New et al. (17). 
Nevertheless, it has been found necessary to impose the physical 
bounds, a .  < (du'/dt')/e < a   , which can be rewritten as 

mm max 

a . a <  du/dt < a   a (14) 
mm max 

in which the values of the dimensionless parameters amin and araax are 
chosen such that Eq. 12 is satisfied for u=0 for which Fp=FL"0. The 
lower bound in Eq. 14 may not be required since the computed values of 
du/dt have turned out to be greater than am^n a in which amm - — 0.8 
has been used (14,15). On the other hand, use has been made of amax - 
1.0 in the stability computation made by Kobayashi et al. (14,15) on 
the basis of the experimental results given by Sawaragi et al. (23). 
This physical upper bound is related to the uncertainty of the computed 
inertia force using constant C^ at the point of wave breaking as well 
as to the uncertainty of the response time of an armor unit under the 
action of the large fluid acceleration of a very short duration. 
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The stability condition for a stationary armor unit against lifting 
can be shown to be satisfied as long as Eqs. 13 and 14 are satisfied 
(14) . Consequently, it is sufficient to consider the stability against 
sliding or rolling for establishing the criterion for initiation of 
armor movement. For the regular incident wave train specified at x=0, 
it may be sufficient to consider one wave period after the periodicity 
of the armor stability is established. The local stability number for 
initiation of armor movement at given location x along the slope is 
hence defined as 

N  (x) = min[N„(t,x)|t < t < (t +1)] (15) 
sx        L R     ' p        P 

in which t„ - normalized time when the periodicity of N^(t,x) with 
respect to t is established, and the normalized period of the incident 
wave is unity. Eq. 15 implies that Nsx(x) for given x is the minimum 
value of l%(t,x) during one wave period after the establishment of the 
periodicity. The critical stability number Nsc for initiation of armor 
movement is the minimum value of the local stability number Nsx(x) 
which varies along the slope. 

The value of the stability number Ns defined in Eq. 13 can be 
calculated for specified incident wave and armor unit characteristics. 
The armor units located in the region of Ns > Nsx(x) will slide or 
roll downwards or upwards along the slope. However, the amount of 
armor movement needs to be predicted to determine whether a specific 
moving unit will move in place or be dislodged out of place. Wiberg 
and Smith (31) developed a detailed theoretical model for saltating 
sediment particles in uni-directional flow. To simplify the analysis 
for unsteady flow, moving armor units have been assumed to slide 
essentially parallel to a rough slope without rolling. The displace- 
ment Xa of a sliding armor unit has then been computed by solving the 
simplified equation of motion for an individual armor unit identified 
by its initial location on the slope at time t=0 (14,15). This compu- 
tation is based on a Lagrangian approach in which each sliding unit of 
its representative length d' is followed starting from its initial 
location at t=0 and its subsequent location at each time level is 
found using the computed normalized displacement Xa=(Xa/d'). As a 
result, Xa depends on t for each sliding unit identified by its initial 
location on the slope. The computed normalized displacement may be 
regarded as a statistical average since the present analysis does not 
account for the effects of the irregular rough surface on the armor 
movement explicitly. Moreover, a significant extension of the present 
analysis will be required to predict the temporal change of the slope 
profile and the resulting breakwater damage which needs to be 
considered for the practical design of breakwaters (26). Since the 
degree of the breakwater damage depends on the wave characteristics 
during an entire storm such as the number of waves (30), the present 
numerical model will also need to be simplified to simulate the break- 
water behavior during an entire storm. 
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COMPARISON WITH EXPERIMENTS 

Kobayashi et al. (12,13,14) have compared the numerical model with 
the large-scale riprap tests of Ahrens (1) for uniform slopes with 
cot#'=2.5, 3.5 and 5 in which incident wave trains were generated in a 
burst and measurements were made of wave runup and zero-damage wave 
heights. Comparison has also been made with the similar but small- 
scale riprap tests for composite and 1:3 uniform slopes conducted by 
Kobayashi and Jacobs (10) who measured wave runup, rundown and zero- 
damage wave heights. The computed wave runup and rundown using the 
friction factor f'=0.3 have shown to agree with the visually-measured 
wave runup and rundown. The numerical model with the adopted seaward 
boundary condition has also predicted the observed increase of the 
reflection coefficient with the surf similarity parameter (24). 
Furthermore, the computed critical stability number for initiation of 
riprap movement has been shown to be in good agreement with the 
measured zero-damage stability number if the lift coefficient CL is 
calibrated in the range CL=0.18-0.4 and the upper bound of the computed 
fluid acceleration is imposed. 

Kobayashi and Greenwald (15) have conducted additional riprap 
tests in a wave tank which is 36 m long, 2.5m wide and 1.5m deep. A 
piston-type wavemaker controlled by a function generator or a computer 
is used to generate incident regular wave trains in a burst which are 
measured using resistance wire wave gages with a wave-absorber beach 
in the tank. The water depth in the tank is kept constant and d'=0.4 
m in these tests. A 1:3 glued gravel slope with an impermeable base 
is installed in the tank and exposed to the same incident wave trains. 
The incident wave conditions considered for eight test runs correspond 
to plunging, collapsing and surging breakers. For each run with given 
incident wave train and slope characteristics, measurements are made 
of the free surface oscillation at the toe of the 1:3 slope, the 
oscillation of the waterline on the slope, wave pressures on the base 
of the slope and the displacements of loose gravel units placed on the 
glued gravel slope. These measured quantities are normalized and 
compared with the computed normalized quantities for each run. 
Kobayashi and Greenwald (15) have presented the summary of the compari- 
sons and the detailed results for Runs 2 and 7 which have been selected 
as typical runs involving plunging and surging breakers, respectively. 
In the following, the compared results for Run 4 are presented as a 
typical run for collapsing breakers. 

For Run 4 the surf similarity parameter £=3.1, the normalized 
water depth at the toe of the slope dt-5.6 and the dimensionless 
parameter related to wave steepness CT=24. Use is made of the friction 
factor f'=0.1 after comparing the measured oscillation of the waterline 
with the computed results using f'=0.1 and 0.2. Fig. 3 shows the 
normalized measured oscillation ij^(t) for the incident wave train 
specified as input for the numerical computation. Fig. 3 also shows 
the computed oscillation »?r(t) at the toe of the slope, associated with 
the normalized reflected wave train. Fig. 4 shows the comparison 
between the measured and computed free surface oscillation ^(t) at 
the toe of the 1:3 gravel slope in which the computed oscillation 
77t(t) is the sum of r/^(t)   and r;r(t) shown in Fig. 3.  Fig. 4 indicates 
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Fig. 4 - Measured and Computed Free Surface Oscillations 

appropriateness of the seaward boundary condition used in the numerical 
model. Fig. 5 shows the comparison of the measured and computed 
oscillations zw(t) of the waterline on the 1:3 gravel slope expressed 
in terms of its vertical elevation relative to SWL normalized by the 
incident wave height H'. On the other hand, Fig. 6 shows the compari- 
son of the measured and computed dynamic pressure variations at the 
depth d'-lO cm below SWL expressed in terms of »7p(t) = [p'/(PgH')l 
with p' = measured dynamic pressure excluding the hydrostatic pressure 
below SWL. In summary, the agreements between the measured and com- 
puted hydrodynamic quantities are similar to those shown in Figs. 4 and 
5 but the agreements for f/p are poor for Runs 3 and 4 corresponding to 
collapsing breakers. The assumption of hydrostatic pressure used in 
Eq. 2 may not be appropriate at the particular location of the pressure 
measurement for Runs 3 and 4. 

The additional input parameters required for the computation of 
the hydraulic stability and movement of armor units have been summariz- 
ed by Kobayashi and Greenwald (15). The lift coefficient CL alone has 
been calibrated by trying CL=0.3 first and then CL-0.18 or 0.4 if 
necessary. For Run 4 the lift coefficient CL~0.3 and the stability 
number Ns=2.2. 
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Fig. 7 shows the computed variation of the local stability number Nsx 
defined by Eq. 15 as a function of the normalized vertical location z 
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relative to SWL along the 1:3 gravel slope. The wave action on the 
slope is limited in the range — d^ < z < R where R = computed upper 
limit reached by the uprushing water above SWL. Loose gravel units 
placed in the region where Ns > Nsx are predicted to move. Fig. 8 
shows the comparison between the measured displacements of loose 
gravel units normalized by the representative length of the units and 
the computed normalized displacement Xa at the end of the specified 
incident wave train. The measured and computed values of Xa are 
plotted as a function of the initial location z on the slope of an 
individual gravel unit. The negative value of Xa implies the downward 
movement along the slope. All the measured values of Xa for the eight 
runs are negative or zero. The data points along the line Xa-0 in 
Fig. 8 correspond to the loose gravel units which are not displaced. 
On the other hand, the computed points in Fig. 8 include only the 
displaced units located initially at the finite-difference grid points 
used for the computation. 
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Fig. 8 - Measured and Computed Gravel Unit Displacements 

In summary, the agreements between the measured and computed displace- 
ments are reasonably good for most of the eight runs. 

CONCLUSION 

The numerical model developed by Kobayashi et al. (12,13,14) has 
been show to be capable of predicting the measured quantities related 
to the wave motion on the riprap slope and the hydraulic stability and 
movement of riprap units (1,10,15). However, these measurements 
limited to the quantities which can be measured fairly easily are not 
sufficient for determining the friction factor f and the hydrodynamic 
coefficients CT_,, Cp and Cy in a rigorous manner. The fluid velocities 
and resulting hydrodynamic forces need to be measured so as to better 
establish these parameters for different armor units. Furthermore, 
the numerical model needs to be improved and extended to make it as 
versatile as hydraulic model testing although the present numerical 
model yields the quantities of practical importance which are difficult 
to measure. 
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