
CHAPTER 119 

NUMERICAL SIMULATION OF TURBULENT WAVE BOUNDARY LAYERS 

J. H. Trowbridge1, A.M.ASCE, C. N. Kanetkar2 and N. T. Wu3 

ABSTRACT: This paper reports numerical computations of fully rough 
turbulent boundary layers produced by first and second order Stokes 
waves. The computations are based on a mixing length turbulence closure 
and on a slightly more sophisticated turbulent kinetic energy closure. 
The first order results compare well with existing laboratory results. 
Reversal of the second order steady streaming under relatively long 
waves, which has been predicted analytically, is also predicted in the 
numerical results, The steady second order velocity field is found to 
become fully established only after a development time on the order of 
a few hundred wave periods. Both the first and second order results 
indicate that advection and diffusion of turbulent kinetic energy 
play a minor role in determining the Reynolds averaged velocity field. 

INTRODUCTION 

A quantitative understanding of turbulent wave boundary layers 
is necessary for coastal engineers concerned with dissipation of wave 
energy, wave-induced sediment transport, and the effect of waves on 
large-scale, slowly varying currents. This study is confined to the 
case of fully turbulent boundary layers produced by weakly nonlinear 
waves near fixed hydrodynamically rough boundaries. The boundary 
roughness elements are assumed to be small compared to the boundary 
layer thickness. 

Previous analytical studies (Kajiura, 1968; Grant and Madsen, 
1979; Brevik, 1981; Myrhaug, 1982; Trowbridge and Madsen, 1984a), 
numerical studies (Bakker, 1974; Johns, 1975; Bakker and van Doom, 
1978), experimental studies (Jonsson, 1966; Jonsson and Carlsen, 1976; 
Bakker and van Doom, 1978; Kamphuis, 1975) and semi-empirical analyses 
(Jonsson, 1966) have clarified the physics of the first-order problem. 
This is the purely oscillatory case corresponding to linear wave 
theory. By using relatively simple analytical solutions based on eddy- 
viscosity models, or numerical results based on Prandtl's mixing- 
length theory, one can predict with confidence the Reynolds-averaged 
velocity field, boundary shear stress and energy dissipation for the 
first-order case. 
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The second-order solution, which incorporates the effect of wave 
nonlinearity, is not as well established. The quantity of particular 
interest in the second-order problem is the steady streaming, or steady 
current which is generated in the boundary layer due to frictional 
dissipation of energy and nonlinearity. The asymmetry in the velocity 
field and bottom shear stress are also of interest in transport prob- 
lems. Longuet-Higgins (1958) assumed that the effective viscosity is 
constant from the point of view of a moving fluid particle, although 
he allowed it to vary with mean particle position. He was able to show 
that under this restriction, the steady streaming just outside the 
wave boundary layer has the same value as in laminar flow. This value 
is independent of the molecular viscosity, and it is always in the 
direction of wave propagation. A later similar study, based on a time- 
invariant viscosity with a particular vertical structure, was reported 
by Johns (1970) with similar results. Later Johns (1977) reported a 
study based on a more realistic turbulent kinetic energy closure, but 
he neglected the second-order properties of the pressure field outside 
the boundary layer. In addition, he found that the steady streaming 
outside the boundary layer was zero. This result contradicts the 
laminar solution and existing analytical solutions, and will be 
discussed below in more detail. Trowbridge and Madsen (1984b) reported 
an analytical study based on a detailed, physically based eddy viscosi- 
ty model, and found that the steady streaming produced by Stokes waves 
is in the direction opposite that of wave propagation for relatively 
long waves. Jacobs (1984) obtained a similar result by using an 
analysis based on Saffman's turbulence model. 

Trowbridge and Madsen (1984b) found that their predictions of the 
steady streaming were sensitive to the eddy viscosity model. They 
used two models: one in which time variation of the viscosity extended 
throughout the boundary layer, and one in which the time variation of 
the viscosity was confined to a thin layer near the boundary. Example 
results are shown in Figure 1, indicating that predictions of the 
steady streaming are quite sensitive to the model used. The two models 
produced nearly indistinguishable results in the first order problem, 
and hence could not be judged on this basis. 

Observations of the second-order properties of wave boundary 
layers are scarce. Bakker and Van Doom (1978) reported a study 
carried out in a laboratory wave basin, in which the horizontal veloci- 
ty was measured inside the boundary layer. In order to obtain turbu- 
lent flow at relatively small laboratory scales, Bakker and van Doom 
had to use roughness elements which were quite large compared to the 
boundary layer thickness, and therefore the relevance for comparison 
with the theoretical studies quoted above is limited. 

This paper reports a numerical study of turbulent wave boundary 
layers, based on Prandtl's mixing-length model and on a slightly more 
sophisticated turbulent kinetic energy closure, which was originally 
suggested by Prandtl (e.g., Schlichting, 1979), developed by several 
researchers, and summarized, for example, by Reynolds (1976). The 
purposes of this study are the following: (1) to clarify the physics 
of the second-order turbulent wave boundary layer; and (2) to give 
insight for developing a simpler analytical model which can be used as 
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Figure 1. Mean velocity u as a function of vertical coordinate z 
based on the analyses reported by Trowbridge and Madsen 
(1984b). Solid line, first model; dashed line, second 
model,  kh - 0.50, A/(30zo) = 179. 
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Figure 2. Computed amplitude and phase of the first and third 
harmonics of the horizontal velocity based on the mixing 
length model, compared with measurements reported by Jonsson 
and Carlsen (Test 1). Solid line, first harmonic; dashed 
line, third harmonic; asterisk, measurement. 
30 z„ = 1.59 cm. 
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the basis for future studies involving more complicated processes. 

GOVERNING EQUATIONS 

The flow to be considered is produced by a regular train of 
plane waves which is described locally by Stokes' second-order solu- 
tion. The governing equations are the boundary layer approximation to 
the 2-D Reynolds-averaged mass and momentum equations.  These are 

3u  Sw  . ... 
ai + ei = ° (la) 

5u L  3u ^  3u  au , TT au L a  r ..... 
-r- + u^- + w — - — + U^- + — - (lb) 
at    3x    dz       at    dx  dz     p 

(e.g., Tennekes and Lumley, 1972) where x is the horizontal coordinate, 
positive in the direction of wave propagation, z is the vertical 
coordinate, positive upward with z equal to zero at the fixed bed, t 
is time, (u,w) is the Reynolds-averaged velocity vector inside the 
boundary layer, U is the horizontal velocity outside the boundary 
layer, T is the Reynolds shear stress, and p is the fluid density. 
The corresponding boundary conditions are the no-slip conditions at 
the bed and the no-stress condition far away from the bed: 

u = w = 0     atz-0 (2a) 

r -» 0        as z -» oo (2b) 

The unsteady component of U is determined by Stokes' second-order 
solution, which is 

—                   3  VA^M U - U - A w  cos(ut - kx) + f    ••      cos[2(«t - kx) ] (3) 
sinh2(kh) 

(e.g., Dean and Dalrymple, 1984). Here an overbar denotes a time- 
averaged quantity, A is the near-bottom excursion amplitude, w is the 
radian frequency, k is the wave number, and h is the water depth. The 
steady component of U is determined by the mechanics of the boundary 
layer, and hence is not known initially. 

An additional equation necessary for the turbulence closure is 
the boundary layer approximation to the turbulent kinetic energy 
equation, which is 

(1     2l   ^       3     [I    2)   +      S     (I    2]       r  3u ^ 3D ,. , 
t   I2 q J + u ax" ll q J + w Tz [2 1 J " p Tz + ai ' £       (4) 

(e.g., Tennekes and Lumley, 1972) where (1/2) q is the Reynolds 
averaged turbulent kinetic energy per unit mass, D is the vertical 
flux of kinetic energy due to turbulent "diffusion," and e is the 
Reynolds averaged dissipation per unit mass. 

The leading terms in (lb) are the temporal acceleration terms 
and the stress term, and the leading terms in (4) are the time deriva- 
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tive term and the three terms on the right side (production, diffusion 
and dissipation). In both equations, the advective terms are order kA 
compared to the leading terms, and the neglected terms are order kS 
compared to the leading terms, where S is the boundary layer thickness. 
The viscous terms are neglected in both equations because they are 
small everywhere compared to the other terms for the case of hydrodyna- 
mically rough bed. 

An important simplification is achieved by using the condition 
of periodicity in space and time. By using this condition together 
with the mass conservation equation to determine the vertical velocity, 
one can write equations (lb) and (4) as follows: 

3u _ u 3u 
St  c at 

a_ 
at 

I 3u f au au _ u au    a_ f£\ ,, . 
c az J at az " at    c at    a2 [PJ ( a) 

o 

fail _ s a_ fail + i L. fail f ^ dz = i *i + §R _ e (5b) {2 J     c at [2 J     c dz [2 J J at az    P dz + dz     £ CDb; 

where c is the wave speed.   Equations (5) involve derivatives with 
respect to z and t only, rather than x, z and t. 

TURBULENCE CLOSURES 

We shall discuss results based on two turbulence closures.  The 
first is Prandtl's mixing length model, which is 

r - »  ^   | g | £ (6) 
Here i(z)    is a vertical length scale which must by specified.  We 
shall use simply 

Jt -  «(z + z0) (7) 

where K is the Karman constant and z0 is the bed roughness scale. The 
turbulent kinetic energy equation is not needed for this closure, and 
the governing equations are simply (5a) and (6). 

The second closure is a slightly more sophisticated turbulent 
kinetic energy closure.  In this closure, the stress is written 

T = C2 q Jt (8) 

where C2 is an empirically determined constant, and the length scale 
Ji(z) must be specified. As before, we shall use (7). The diffusion 
and dissipation terms are modeled by 
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21 
(9a) D - c2 c3 q Z  ~   [f-J  ;   e  - cx q

3/-« 

where c^ and C3 are constants.  The boundary conditions for q are 

q -+ 0 as z •+ «>  ;  q2 - C4 | r/p | at z = 0 (9b) 

where C4 is an empirical constant. The constants have been determined 
by other researchers by comparison with observations made in steady 
flows. We shall use the following values: c^ - 0.054, C2 - 0.38, 
c3 = 0.59, C4 = 7 (Reynolds, 1976). 

It can easily be shown that the turbulent kinetic energy closure 
reduces to the mixing length model if temporal rate of change, advec- 
tion, and diffusion of turbulent kinetic energy are neglected. The 
mixing length model can therefore be regarded as being based on a 
simplified turbulent kinetic energy balance in which production bal- 
ances dissipation. 

SOLUTION METHOD 

As noted above, the advective terms on the left and right sides 
of (5a) and the left side of (5b) are order kA compared to the leading 
terms. In Stokes waves, kA is a small quantity, and the advective 
terms may be neglected for the purpose of a first approximation, 
yielding 

3u _ §_ (T)  _ au 
at dz  [pj  at (10a) 

a  fq^l   3D  r 3u m- a*,   lo I   a s, + e  ~  ° (10b) at l_2 J   3z   p  dz 

These equations are consistent with Stokes first order solution (linear 
waves) . With the use of one of the turbulence closures discussed 
above, these equations may in principle be solved subject to the 
appropriate boundary conditions, with 3U/at determined from the first 
term in (3) . This solution is purely oscillatory and contains only odd 
harmonics of the fundamental Fourier component, i.e., terms with 
periods of T, T/3, T/5,etc, where T is the fundamental wave period. 

Once a first-order solution is obtained from (10), the small 
advective terms in (5) may be estimated from the first-order solution. 
Equations (5)can be written 

z 
dy_^fi]=^_uauu3_u_ia_urau       mi 
at az \j>)     at c at c at c az J at      

(     ' 
0 

z 
d     fa2!   „  r3u      u 3  fa2!   1 3 (a2}    f 3u  ,    .... . 
at {2} - D - p ai + * " c ai [2) - c ai  [2 J J si dz  (llb) 
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With the advective terms determined by the first order solution, and 
with the terms involving U determined by both terms in (3), the right 
sides of equations (11) are known. By using one of the turbulence 
closures discussed above, one may in principle solve equations (11) 
subject to the appropriate boundary conditions. This procedure yields 
a solution consistent with Stokes' second order solution for the wave 
field. To this level of approximation, the boundary layer solution 
consists of a large, purely oscillatory, first order part, containing 
only odd harmonics of the fundamental Fourier component, and a smaller 
second order part, containing even harmonics of the fundamental Fourier 
component, as well as a steady component. 

Equations (10) and (11) resemble coupled heat equations, each 
containing an unsteady term, a diffusion term, and various source and 
sink terms. These equations can be solved subject to the appropriate 
boundary conditions by means of a fully implicit, finite control 
volume procedure described in detail by Patankar (1980) . In deriving 
this procedure, one integrates the governing equations across a small 
control volume of height Az and considers the fluxes of momentum and 
turbulent kinetic energy across the interfaces of each control volume. 
The scheme leads to a numerical time-stepping procedure in which one 
solves iteratively for the spatial distribution of velocity and kinetic 
energy at each time step. 

In the computations described below, we used a vertical grid with 
a spacing varying as the cube of the distance above the solid boundary, 
and we applied the conditions at infinity at a finite distance above 
the boundary equal to A. In most computations we used 360 time steps 
per wave period and 51 grid points, and our convergence criterion was 
that the last iteration must yield values within approximately one 
part in 10* of the previous iteration. We found that computations 
carried out on this basis yielded results which were nearly identical 
to results obtained with larger numbers of grid points and time steps, 
and with a stronger convergence criterion. We began the computations 
from rest, and we found that the first order solution reached a perio- 
dic state after roughly six to ten periods. The second order solution 
required a much larger time to reach a periodic state, as discussed 
below. 

FIRST ORDER RESULTS 

As discussed in the Introduction, the first order solution for 
the case of a fixed bed with roughness elements small compared to the 
excursion amplitude is fairly well established on the basis of existing 
experimental, theoretical and semi-empirical studies. The purposes of 
presenting additional first order results here are to show that the 
numerical solutions reproduce available observations, and to compare 
the results produced by the two different turbulence closures. 

Figure 2 shows vertical distributions of amplitude and phase of 
the first two nonzero Fourier components in the first-order velocity 
field. The Figure also shows observations reported by Jonsson and 
Carlsen (1976, Test 1). The computations in Figure 1 are based on the 
mixing length closure.  Figure 3 shows a comparison of results based 
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Figure 3. Computed dimensionless amplitude and phase of the first 
harmonic of the horizontal velocity. Solid line, mixing 
length model; dashed line, time rate of change of turbulent 
kinetic energy equal to production minus dissipation; 
dotted line, turbulent kinetic energy closure. 
z0/A - 0.004. 
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Figure 4. Computed amplitude and phases of the first three nonzero 
Fourier components of the first order eddy viscosity, 
normalized by A and w, based on the mixing length model. 
Solid line, mean component; dashed line, second harmonic; 
dotted line, fourth harmonic.  z0/A = 0.004. 
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on the mixing length model and on the turbulent kinetic energy closure. 
Both closures reproduce the experimental observations well, and the 
results based on the two closures are nearly indistinguishable from 
each other. A small improvement in the agreement between computations 
and observations is possible if one uses a more physically reasonable 
length scale than that given by (7) . This point is well understood 
based on previous theoretical studies (Kajiura, 1968; Brevik, 1981; 
Trowbridge and Madsen, 1984a) and will not be pursued here. 

We thought initially that because wave boundary layers are an 
unsteady phenomenon, the most important parts of the first-order 
turbulent kinetic energy balance might be unsteadiness, production and 
dissipation, because diffusion is known to be relatively small in 
steady turbulent flows near solid surfaces (e.g., Tennekes and Lumley, 
1972) . Neglect of the diffusion term in the turbulent kinetic energy 
balance leads to a simplified solution, because in this case no bounda- 
ry conditions are necessary for the turbulent kinetic energy. We 
found, however, that computations based on a simplified model without 
the diffusion term are only slightly different, but slightly worse 
from the point of view of comparison with experiments, than computa- 
tions based on either the mixing length or kinetic energy closures. 
We therefore abandoned this approach. 

Figures 4 and 5 show computations of the eddy viscosity, uj, 
which is defined by 

' - C »I ^ (12) 

In the mixing length closure, 

vT - *2 z2 \dfJ (13a) 

and in the kinetic energy closure 

vr -  c2 q S. (13b) 

The results in Figures 4 and 5 are very close. This is a convincing 
demonstration that the mixing length and kinetic energy closures give 
nearly identical results in the first order problem, because computa- 
tions of eddy viscosity are more sensitive to the closure model than 
are computations of velocity. 

The conclusions based on the first order results presented here 
are the following: (1) both turbulence closures reproduce the observa- 
tions quite well; and (2) advection and diffusion of turbulent kinetic 
energy, which are the processes neglected in the mixing length model, 
have no significant effect on the Reynolds averaged motion. 

SECOND ORDER RESULTS 

Existing analytical models (Trowbridge and Madsen,1984b) indicate 
that predictions of the second order boundary shear stress and the 
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Figure 5.  Computations as in Figure 4 based on the turbulent kinetic 
energy closure. 
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Figure 6. Computed amplitudes and phases of minus the second order 
forcing term on the right side of (11a) , normalized by 
kA u , based on the mixing length model. Solid line, mean 
component; dashed line, second harmonic; dashed-dotted 
line, fourth harmonic.  z0/A - 0.004, kA - 0.2, kh - 1.0. 
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unsteady component of the velocity inside the boundary layer are rela- 
tively insensitive to the particular eddy viscosity model used. In 
discussing the second order results, we shall therefore concentrate on 
the steady streaming. Because there is no significant mean pressure 
gradient in an oscillatory wave field, the steady motion is forced 
solely by the nonlinear advective terms on the right side of equation 
(11a). In general, these terms contain a mean component plus compo- 
nents at even harmonics of the fundamental frequency. Figure 6 shows 
the vertical distribution of the amplitudes and phases of the forcing 
function on the right side of (11a). The dominant forcing occurs at 
twice the frequency of the first order wave field, but the mean forcing 
is clearly evident. Throughout most of the boundary layer, the mean 
forcing is in the direction of wave propagation, but near the outer 
edge of the boundary layer the mean forcing is in the opposite direc- 
tion.  Outside the boundary layer, of course, the mean forcing is zero. 

In carrying out the second order solution, we began the computa- 
tions from rest, as in the first order solution. The solution for the 
velocity profile appeared to become nearly periodic after approximately 
six to ten periods. For those short times, we found mean velocity 
profiles which approached zero outside the boundary layer, similar in 
this respect to Johns' (1977) computations. Computations carried out 
over larger times, however, showed that the mean velocity inside the 
boundary layer continues to evolve for a long period, gradually reach- 
ing a steady state only after a few hundred periods. Figure 7 shows 
the mean velocity at several different times after the start of the 
motion, indicating the gradual approach to a positive, steady profile 
at very large times. At small times, the velocity outside the boundary 
layer is in the direction opposite that of wave propagation. This 
behavior is explained by the fact that the mean forcing is negative 
near the outer edge of the boundary layer. Initially, the boundary 
layer thickness is small, and the vertical transport of momentum due 
to Reynolds stresses is small compared to the mean forcing. Conse- 
quently, at small times the fluid at the outer edge of the boundary 
layer acts like a frictionless fluid under the action of a mean, 
negative, distributed body force. The resulting velocity is negative 
until the effect of the solid boundary diffuses outward far enough to 
begin moving the fluid forward. The results in Figure 7 are believed 
to be qualitatively correct with possible quantitative discrepancies 
due to recovery from initial conditions and the finite computational 
domain. 

The velocities shown in Figure 7 correspond to kh equal to 1.0, 
or waves in water of intermediate depth. In this case, the mean 
velocity at large times is in the direction of wave propagation. 
Figure 8 shows similar mean velocity profiles for kh equal to 0.5, 
corresponding to relatively long waves. As in Figure 7, the gradual 
approach of the mean velocity to a steady state is evident. In Figure 
8, however, the mean velocity is in the direction opposite that of wave 
propagation. This figure confirms qualitatively the reversal of the 
steady streaming under long waves which was found analytically by 
Jacobs (1984) and Trowbridge and Madsen (1984b). 
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Figure 7. Computed mean velocities at several different times after 
the start of the motion. From left to right, the curves 
correspond to t/T - 10, 30, 50, 100. z0/A = 0.004, 
kA = 0.2, kh - 1.0. 
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Figure 8.  Computations as in Figure 7 for kh = 0.5. 
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Because of the long time periods required for the mean velocity 
to reach a steady state, numerical simulations of the second order 
problem based on implicit time-stepping procedures are very time- 
consuming. Our present results indicate, however, that computations 
based on the mixing length closure are nearly identical to computations 
based on the turbulent kinetic energy closure. Figures 7 and 8 are 
based on the mixing length model, and at relatively short times (of 
order ten wave periods) there is no significant difference between 
these results and the computations based on the turbulent kinetic 
energy closure. 

The conclusions based on the second order computations are the 
following: (1) reversal of the steady streaming produced by relatively 
long waves is confirmed qualitatively; (2) the two turbulence closures 
give very similar results, indicating that processes in the turbulent 
kinetic energy equation other than production and dissipation have no 
significant effect on the Reynolds averaged velocity and stress; and 
(3) the time-averaged motion requires a very long time to reach a 
steady state. Conclusion (3) implies that the averaged motion may not 
become steady during time periods over which a natural wave field can 
be considered stationary. Consequently, it may be necessary to 
consider the history of the wave field when considering low frequency 
boundary layer motions produced by natural waves. In laboratory 
basins, where controlled, stationary conditions are possible for long 
times, the mean motion might have time to reach a steady state, if 
experiments are carried out for long enough periods. 

A SIMPLE ANALYTICAL MODEL 

For the purposes of studying more complicated processes, such as 
sediment transport, a simple analytical model which captures the main 
features of the flow is preferable to a more complicated, although 
possibly more consistent, numerical solution. One of the purposes of 
the numerical study reported here is therefore to guide development of 
realistic analytical models. The following very simple analysis is 
essentially the argument of Jacobs (1984) in a slightly more straight- 
forward form. It is based on a mean momentum balance derived by 
Longuet-Higgins (1958) and on the assumption of a constant friction 
factor. 

The mean momentum balance derived by Longuet-Higgins (1958) is, 
to second order, 

7b = -(^)2=00 (14) 

where r^ is the boundary shear stress. Use of the mass equation and 
the condition of periodicity in space and time shows that the vertical 
velocity may be written 

1 
w = — 

c 
3u 
at dz (15) 
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Substitution of the  first order momentum balance   (10a)  yields 

» = ?|    +    ^    C-'b) (16) 

to first order. Substitution of (16) into (14) and use of the bounda- 
ry conditions (2) gives 

n> = \   n^J d7) 

correct to second order. If we assume that a constant wave friction 
factor f gives an adequate representation of the boundary shear stress, 
we have 

rh - \    i p  U|U| (18) 

Substitution of (3) and (18) into (17) yields, after straightforward 
algebra, the following result for the steady streaming just outside 
the boundary layer: 

S  2 o! L       3  1  1 
3 c      4  . ,2/it_s J L      smhz(kh) J 

correct to second order. Equation (19) is the result obtained by 
Jacobs (1984). This result agrees fairly well with the present numeri- 
cal computations, and it indicates a reversal of the steady streaming 
produced by long waves. It is noteworthy that (19) is independent of 
the boundary roughness. 

The above analysis may be used to calculate the time-varying 
boundary shear stress in a manner which incorporates the presence of 
the steady streaming consistently, although approximately. 
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