
CHAPTER 110 

MODELING TURBULENT BOTTOM BOUNDARY LAYER DYNAMICS 

Y. P. Sheng*, Member ASCE 

ABSTRACT 

This paper presents a modeling approach aimed at soving a com- 
plete hierarchy of turbulent bottom boundary layers which are often 
encountered in practical coastal and oceanographic engineering 
problems. The practical problem is extremely complex due to the 
presence and interaction of competing processes. A comprehensive 
model is thus needed to first provide fundamental understanding of a 
variety of turbulent bottom boundary layers before any simple model 
for the complex problem can be meaningfully constructed. This paper 
presents a comprehensive second-order closure model of turbulent 
transport and in addition, discusses some applications of the model to 
wave boundary layer, wave-current boundary layer, sediment-laden 
boundary layer and two-dimensional boundary layer. Example is 
provided to show how such a comprehensive model may be used to guide 
the development of a simple model. 

I.   INTRODUCTION 

Flow in coastal waters is generally turbulent. A thorough under- 
standing of the dynamics of turbulent bottom boundary layers is of 
paramount importance in the field of coastal and oceanographic engi- 
neering. For quantitative estimation of sediment transport rate and 
optimal design of structures in coastal waters, it is essential to 
first estimate the hydrodynamic forces acting on the ocean bottom 
which may be flat or complicated by the presence of bedforms or 
structures such as pipelines (Figure 1). The hydrodynamic forces can 
be produced by slowly varying currents (due to wind or tide) or short- 
period oscillatory currents (due to linear or nonlinear short-period 
waves) or a combination of both. When hydrodynamic forces exceed 
certain critical values, bottom sediments may be eroded and carried 
into the water column and, consequently, significant suspended sedi- 
ment concentration and vertical concentration gradient may be produced 
thus leading to modification of the flow. 

Simple Models or Comprehensive Models? 

Dynamics of turbulent bottom boundary layers in coastal waters is 
extremely complex because of the coexistence of many competing mecha- 
nisms in turbulent flows:  short-period wave, stratification, wave- 
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Figure 1 Bottom boundary layer flow over (a) flat and wavy bottom, 
and (b,) flat bottom with pipelines. 

current interaction, nonlinearity, and two-dimensional and even three- 
dimensional effects due to the presence of complex structures or bed- 
forms. A comprehensive model capable of accurately resolving the 
complex turbulent boundary layer dynamics is urgently needed to pro- 
vide physical insight and to solve practical engineering problems. 
Such a model must contain the proper physics of the major competing 
mechanisms and hence, cannot be necessarily "simple". Despite this 
fact, however, engineers faced with the complex practical problems in 
coastal sediment transport and structural design have generally 
favored the development and use of the so-called "simple" analytical 
or numerical models which, unfortunately, are often developed at the 
expense of compromising physics. Indeed, the literature is abound 
with such "simple" analytical and numerical models for some of the 
processes described above. For example, since the early eddy- 
viscosity model of Kajiura (1968), numerous similar eddy-viscosity 
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models have been developed to simulate turbulent wave boundary layers. 
Eddy-viscosity models for wave-current interaction (e.g., Bakker and 
Van Doom, 1978; Grant and Madsen, 1979) and stratified flow (e.g., 
Long, 1981) have also been attempted. While these models for indi- 
vidual processes could be calibrated to produce "good" results when 
sufficient data exist and under limiting conditions, these models 
generally fail to work when two or more of the competing mechanisms 
coexist or when little data exist and "prediction" is required. This 
is primarily due to the grossly simplified turbulence parameterization 
contained in these simple models, where the turbulence is typically 
assumed to be always in equilibrium with the mean flow and hence the 
turbulent transport is modeled as a local diffusive process only. 
Moreover, simple eddy-viscosity models developed for different pro- 
cesses cannot be readily superimposed for application to complex 
problems. Nevertheless, simple models continue to be developed and 
used. For example, forces on bottom pipelines have generally been 
estimated by using the simple but empirical Morison's equation 
(Sarpkaya and Isaacsen, 1981), which largely ignores the physics. 

Modeling Approach 

In order to develop meaningful simple analytical or numerical 
models for turbulent boundary layers and coastal sediment transport, 
one must start from comprehensive models which do not make ad-hoc 
assumptions about the processes described above. This paper describes 
such a comprehensive second-order closure model of turbulent transport 
which has been previously applied to simulate wave boundary layer 
(Sheng, 1982 and 1984) and wave-current interaction (Sheng, 1984). 
Such a comprehensive model, because of the added physics it contains, 
can simulate the individual processes without ad-hoc parameter tuning, 
and hence, is useful for understanding and predicting the complex 
turbulent boundary layer dynamics when many competing mechanisms 
coexist or when little data exist. In the long run, we can use the 
physical insight gained from these comprehensive models to provide 
guidelines for development of meaningful simple analytical or 
numerical models. 

Model Validation 

Previous eddy-viscosity models for wave boundary layers and cur- 
rent-wave boundary layers could only be calibrated against mean flow 
quantities. On the other hand, Sheng (1984) compared the results of a 
second-order closure model with both the mean and turbulent quantities 
within turbulent bottom boundary layers. This is a very important 
point—when modeling complex turbulent flow phenomena, model results 
must be compared with turbulence data. Comparison of model results 
against mean flow data alone and/or quantities of second-order impor- 
tance (e.g., mass transport) is insufficient to judge the quality of 
the model. While the second-order mass transport may have some 
meaning in wave theory or laboratory study of wave boundary layer 
(Sleath, 1984), in practical situations the negligible mass transport 
velocity is easily overwhelmed by the tidal currents or wind-driven 
currents, hence, it is extremely hard to discern and is of question- 
able practical importance. 
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This Work 

In addition to a brief review of the complete second-order 
closure model, this work also discusses two simplified versions of the 
model which are useful under certain conditions. Some recent appli- 
cations of the second-order closure model to simulate wave boundary 
layers, wave-current boundary layers, sediment-laden bottom boundary 
layers, and two-dimensional effects are discussed. 

II.  MODELS OF TURBULENT FLOWS 

Instead of presenting model equations which are only valid for a 
particular process of interest, this work will present the following 
general equations which are valid for turbulent flows where more than 
one of the processes (e.g., stratification, wave-current interaction, 
nonlineartiy, stratification, and 2-D or 3-D effects) are present. 
Anticipating applications to 1-D, 2-D, axisymmetric and even 3-D flow 
situations, the model equations are given in tensor notation. 

Mean Equation 

Reynolds-averaged equations for the mean flow quantities in an 
imcompressible fluid in the presence of rotation are: 

3xi 
en 

3U,       3U.U, 3u,u,       ,     . ~ , 3U 
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where U^ and u^ are the mean and fluctuating velocity components, 
p and p are the mean and fluctuating components of density, E is 

permutation tensor, ft is earth's rotational speed, v is the kinematic 
viscosity, K is the kinematic diffusivity, and $ and $ are the mean 
and fluctuating temperature (or salinity). An equation of state is 
needed to relate p and *. 

It is apparent that the above equations are not closed unless 
additional Information Is given for the second-order correlations 
u.u. and u,<|>.  Models which provide information on u.u. and u.ij) are 
called turbulence models. 

Ejcisting models for turbulent transport can be grouped into two 
categories: those which employ the turbulent (or eddy) viscosity/ 
diffusivity concept, and those which do not. 
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Eddy-Vlscoslty Models 

The eddy-viscosity/diffusivity concept assumes that, in analogy 
to the viscous stresses and fluxes in laminar flow, the turbulent 
stresses and heat or mass fluxes are proportional to the mean velocity 
and temperature or concentration gradients, respectively. In tensor 
notation,   the  concept  is: 

3U,        3U. 
(4) -SX- vU + ri) --3-V i  j t^3x 3x,'       3       ij 

V  - Kt \ <5) 

where vt and Kt are respectively the eddy viscosity and diffusivity, 
and q = u.u. is twice the turbulent kinetic energy (k). Unfortu- 
nately, vt aricl Kj. are not fluid properties but depend strongly on the 
state of turbulence and may vary considerably across the flow, from 
time to time, and from one flow to another. Despite the simplicity of 
its concept, however, the precise value/formula for the eddy viscosity 
is not necessarily simple to determine. One often hears such remarks 
in a technical paper or presentation: "What kind of eddy viscosity is 
needed in order that the model results agree with data?" Thus, eddy 
viscosity is essentially a convenient "tuning parameter" for many 
people who do not wish to deal with turbulence in a rigorous 
fashion. One is cautioned that a "well tuned" eddy viscosity formula 
for one process/problem cannot be readily applied to another process/ 
problem. In addition, the concept breaks down completely in flow 
regions where the flux is against the gradient of the transported 
quantity. Such counter-gradient-flux regions occur quite frequently 
in turbulent flows. 

Second-Order Closure Models 

This type of turbulence model uses transport equations for the 
turbulence stresses u.u. and fluxes u. <)> such that the eddy-viscosity 
concept does not have to be introduced^ The transport equations for a 
second-order closure model (e.g., Sheng, 1982), following a procedure 
outlined by Donaldson (1973), are presented in the following in terms 

vy v 
3u u,     3u.u,      3U     3U      u. p     up 

T^n-^-Yi^-"^"^"'^    (6) 
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where the last 5 terms in Eq. (6), the last 4 terms In Eq. (7), and 
the last 3 terms in Eq. (8) are "modeled" terms. For example, in 
Eq. (6), the term containing v is a diffusion term, the term con- 
taining q/A is a tendency-toward-isotropy term, while the last 3 terms 
are dissipation terms with the last 2 terms vanishing at high Reynolds 
number. The model constants, v = 0.3, b = 0.125, a = 3, A = 0.75, 
and s = 2.8, are determined by comparing model simulations with a wide 
variety of critical laboratory experiments where only one or two of 
the modeled terms is dominant, and remain fixed for any new model 
application (Sheng, 1986a). Thus the model is sometimes termed an 
invariant model. 

An equation for the turbulence macroscale A is needed to close 
the system of equations (1) through (8): 

DA  . ,.A   3Di,_ . ,,  x . , 9 , . JA v  0.375r3qA^
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9 
It is useful to derive an equation for q* from Eq, (6): 
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Simplified Second-Order Closure Models 

Equations (6), (7), (8) and (9) constitute the so-called 
"Reynolds stress model" and is the most complete second-order closure 
model. These dynamic equations contain much more physics of the 
turbulent flow than the eddy-viscosity model, or first-order closure 
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model. Although the solution of these equations requires considerable 
computational effort, simplifications of the equations can sometimes 
be introduced in practical applications to reduce the computational 
effort. For example, if the time scale of mean flow is large compared 
to that of turbulence, "quasi-equilibrium" approximation may be intro- 
duced such that only Eqs. (9) and (10) are needed to represent the 
dynamics of turbulence, while Eqs. (6), (7) and (8) are replaced by a 
set of algebraic equations where the total derivative and diffusion 
terms are neglected. If, in addition, the turbulence does not change 
significantly over A, the "super-equilibrium" approximation is valid 
such that Eqs. (6), (7) (8) (9) are replaced by a number of algebraic 
equations. Such simplified second-order closure models are used to 
represent the vertical turbulence in the three-dimensional hydro- 
dynamic model of coastal and estuarine circulation (Sheng, 1986b). 

III. SECOND-ORDER CLOSURE MODELING OF WAVE BOUNDARY LAYERS 

Wave Boundary Layer 

The Reynolds stress model as presented above has been applied to 
simulate the wave boundary layer of Jonsson and Carlsen (1976). The 
one-dimensional version of the model was used and hence the equations 
become considerably simplified, since only vertical gradients appear 
in the equations. Boundary layer approximation was invoked and the 
free-stream oscillatory currents are balanced by a lateral pressure 
gradient which is imposed throughout the boundary layer. Results 
shown in Sheng (1982) and Sheng (1984) demonstrated that the Reynolds 
stress model was able to faithfully simulate the mean velocities at 
various phase angles and the phase lag of mean velocities at different 
vertical levels. In addition, comparison of the model results vs. 
computed Reynolds stress data indicated the lack of temporal resolu- 
tion of mean velocity measurements. 

Logarithmic Layer 

Perhaps one of the most important model results is the explicit 
computation of the instantaneous logarithmic layer. It is a well 
known fact that the velocity distribution within a homogeneous and 
steady-state bottom boundary layer follows the logarithmic variation: 

u - i^JUf-) (11) 
o 

where k is the von-Karmen constant, u* is the friction velocity and zQ 
is the roughness height, while the turbulent fluxes are more or less 
uniform within the layer. In the presence ot density stratification 
due to variation in temperature, salinity and/or suspended sediment 
concentration, the thickness of the logarithmic layer (or constant 
flux layer) may be significantly modified. In addition, the presence 
of a body force such as pressure gradient may also significantly alter 
the thickness of the logarithmic layer. Jonsson and Carlsen (1976) 
could not measure their turbulence directly and hence assumed a fixed 
logarithmic layer thickness of 6.3 cm.  Results of the Reynolds stress 
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model clearly indicate a much thinner logarithmic layer, as shown in 
Figure 2, which is modulated by the pressure gradient associated with 
the free-stream oscillatory flow. The instantaneous Reynolds stress 
at three levels (0.5 cm, 1 cm and 4 cm above the bottom) and two phase 
angles as shown agree well with model results. 
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Figure 2 Reynolds stress within Jonsson and Carlsen's wave boundary 
layer.     : model;  A's: data;   indicates the 
approximate edge of the logarithmic layer. 

Eddy Viscosity 

The presence of the logarithmic layer is validated by the model, 
thus the eddy viscosity near the bottom can be found to scale with 
ku*z, where z is the distance above the bottom: 

T 
3u/3z u^/kz (12) 

Since u* is a function of time, vt must be a function of time and 
space. This explains why almost all of the previous eddy-viscosity 
models, which use either spatially varying or temporally varying eddy 
viscosity, fail to faithfully reproduce Jonsson and Carlsen's wave 
boundary layer data (Sheng, 1986a). However, Eq. (12) is not valid 
outside the logarithmic layer. 
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Another reason why eddy viscosity is a 
turbulent boundary layers is visualized in 
eddy  viscosity  calculated  from Jonsson 
v = T/(AU/AZ). It is apparent that the 

scattered and may become negative which 1 
The solid lines represent the eddy viscosity 
of the Reynolds stress model via v = ww A/q. 

poor concept for studying 
Figure 3 which shows the 
and Carlsen's data via 
eddy viscosity is often 
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Figure 3 Eddy viscosity computed from Jonsson and Carlsen's data 
(A,   , A,   ) and computed from the model results via 
ww A/q. 

Simplified Second-Order Closure Models for Wave Boundary Layer 

Recently, the "quasi-equilibrium" and "super-equilibrium" 
versions of the second-order closure model were applied to simulate 
Jonsson and Carlsen's wave boundary layer (Sheng, 1987). The "quasi- 
equilibrium" results compared very well with data while the "super- 
equilibrium" results did not do as well. However, this in no way 
implies that the simplified second-order closure models are sufficient 
for simulating all turbulent wave boundary layers, since the state of 
turbulence may vary from one boundary layer to another and from one 
problem to another. 
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Other Wave Boundary Layers 

Sheng (1984) simulated the turbulent bottom boundary layer under- 
neath a cnoidal wave and found strong asymmetric behavior in the pre- 
dicted mean velocities and Reynold stresses. The maximum Reynolds 
stress was found to be 50% higher than that produced by a simple sinu- 
soidal wave boundary layer. 

Another interesting wave boundary layer experiment was conducted 
by Hino, et al. (1983). It was reported that the measured turbulent 
intensities increased substantially while the flow changes from the 
acceleration stage to deceleration stage. Again, results of the 
Reynolds stress model agree well with data (Sheng, 1987). 

IV. WAVE-CURRENT BOTTOM BOUNDARY LAYER 

Kemp and Simons (1982) measured the mean and turbulent quantities 
within the turbulent bottom boundary layer underneath a wave pro- 
pagating with the current. They found that for smooth bed, the tur- 
bulent stresses produced by the wave alone and the current alone can 
be superimposed to give the total stress for the wave-current case. 
For rough bed, however, the wave-current interaction is highly non- 
linear and the turbulent stressed due to current and wave cannot be 
linearly superimposed. Although their experiments appear to contain 
2-D and 3-D effects in the vicinity of the roughness elements (due to 
the relatively small ratio between particle displacement and roughness 
Abm/ks), it is interesting to compare the results of a 1-D Reynolds 
stress model against their data. As an example, comparison in terms 
of the maximum vertical varinace is shown in Figure 4, where the model 
results were for the case of WCR5. Notice the generally good agree- 
ment between data and model results, except in the vicinity of the 
roughness elements where 2-D effect is important. 

V. SEDIMENT-LADEN BOTTOM BOUNDARY LAYER 

The second-order closure model has been recently applied to simu- 
late the effect of suspended sediment concentration on the boundary 
layer flow structure and to improve the determination of erosion/ 
deposition relationships from laboratory experiments (Sheng, 1987). 

VI. TWO-DIMENSIONAL EFFECT 

Most bottom boundary layer models, including those cited above, 
are one-dimensional and hence cannot be expected to work when two 
dimensional effect due to bedforms or structures is present. DuTolt 
and Sleath (1981) measured velocity measurements close to rippled beds 
in oscillatory flow and compared their data with three 1-D models 
(Kalkanis, 1964; Kajiura, 1968; Bakker, 1974). The agreement between 
data and model results was found to be rather poor. In 2-D flows, 
profile drag becomes important in addition to the skin friction drag. 
Vortex generation and shedding play an important role in the two- 
dimensional bottom boundary layer dynamics, but are simply not 
resolved in the one-dimensional models. 
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As an example, the 2-D version of the second-order closure model 
was used to simulate the flow and separation behind a backward facing 
step. As shown in Figure 5, the computed mean velocity and Reynolds 
stress distribution compare well with data at various downstream dis- 
tances X behind the step with height H. The Reynolds stress distri- 
bution shown is in the vicinity of the flow reattachment point. It 
should be pointed out that for such a complex problem, a "simple" 
eddy-viscosity model simply does not exist. 

The 2-D version of the Reynolds stress model can be applied to 
simulate the wave boundary layer or wave-current boundary layer over a 
wavy bottom. It should be pointed out that such model will be able to 
correctly resolve the nonlinear inertia terms, without treating it as 
"second-order" effect as in the 1-D model. 

VII. CONCLUSIONS 

The dynamics of turbulent bottom boundary layers in coastal 
waters is extremely complex because of the simultaneous presence of 
such competing processes as stratification, short-period wave, wave- 
current interaction, nonlinearity, and two-dimensional effects. 
Numerous "simple" (from the point of view of computational effort) 
models for individual processes (e.g., a pure wave boundary layer) 
have been developed in the past. Unfortunately, many of these models 
were developed with ad-hoc empiricism and hence one cannot superimpose 
the simple models for application to complex problems. In order to 
ultimately derive simple analytical or numerical models of the complex 
overall problem, a comprehensive model must be first constructed and 
used to gain physical insight and to provide guidance for formulating 
simpler models. 

A comprehensive second-order closure model of turbulent transport 
is presented here. Model applications to a variety of bottom boundary 
layers (wave boundary layer, wave-current boundary layer, sediment- 
laden boundary layer, and two-dimensional boundary layers) are dis- 
cussed. The model is capable of simulating the measured mean and 
turbulent quantities. Simplified versions of the second-order closure 
model are available and can be applied to some problems. An example 
was provided to demonstrate the fact that an eddy-viscosity model is 
meaningful only if it is derived based on sound understanding of 
turbulent flow. 

For meaningful model validation, model results must be compared 
with measured turbulence data instead of mean flow data only. 



TURBULENT BOTTOM BOUNDARY LAYER 1507 

25 

20 

S     is-) 
E 

10 

•M   4o 

DATA:{ 

MODEL: 

CURRENT ALONE 

A + X O.WAVE S CURRENT 

• WAVE AND CURRENT w' 

10 20 30 (mm/*) 

Figure 4 Vertical variance within 25 mm of bed-roughness apex in Kemp 
and Simons' 1982 wave-current experiment and computed by the 
Reynolds stress model. 
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Figure 5 Mean velocity and Reynolds stress at several locations 
behind a backward facing step. His step height, UQ, is free 
stream velocity, and x and y are horizontal and vertical 
distances. 



1508 COASTAL ENGINEERING -1986 

References 

Donaldson, C. duP., 1973: "Atmospheric Turbulence and the Dispersal 
of Atmospheric Pollutants", in AMS Workshop on Micrometeorology, 
(D. A. Haugen, ed.), Science Press, Boston, pp. 313-390. 

DuToit, C. G. and J. F. A. Sleath, 1981: "Velocity Measurements Close 
to Rippled Beds in Oscillarory Flow", JFM, 112, pp. 71-96. 

Grant, W. D. and 0. S. Madsen, 1979: "Combined Wave and Current 
Interaction with a Rough Bottom", J. Geophys. Res., 84, 
pp. 1797-1808. 

Hino, M., M. Kashiwayanagi, a. Nakoyama, and t. Hara, 1983: 
"Experiments on the Turbulence Statistics and the Structure of a 
Reciprocating Oscillatroy Flow", JFM, 131, pp. 363-400. 

Jonsson, I. G., and N. A. Carlsen, 1976: "Experimental and 
Theoretical Investigations in an Oscillatory Rough Turbulent 
Boundary Layer", J. Hydr. Res., 14, pp. 45-60. 

Kajiura, K., 1968: "A Model of the Bottom Boundary Layer in Water 
Waves", Bull Earthq. Res. Inst., 46, pp. 75-123. 

Kemp, P. H. and R. R. Simons, 1982: "The Interaction Between Waves 
and a Turbulent Current: Waves Propagating with the Current", J. 
Fluid Mech., vol. 116, pp. 227-250. 

Sarpkaya, T., and M. Isaacson, 1981: "Mechanics of Wave Forces on 
Offshore Structures", Van Nostrand Reinhold Co., 651 pp. 

Sheng, Y. P., 1982: "Hydraulic Applications of a Second-Order Closure 
Model of Turbulent Transport", in Applying Research to Hydraulic 
Practice, (P. Smith, ed.), ASCE, pp. 106-119. 

Sheng, Y. P., 1984: "A Turbulent Transport Model of Coastal 
Processes", Proc. 19th Int. Conf. Coastal Eng., ASCE, pp. 2380- 
2396. 

Sheng, Y. P., 1986a: "Finite-Difference Models for Hydrodynamics of 
Lakes and Shallow Seas", in Physics-Based Modeling of Lakes 
Reservoirs, and Impoundments, (W. G. Gray, ed.), ASCE, New York, 
pp. 146-228. 

Sheng, Y. P., 1986b: "On Modeling Three-Dimensional Estuarine and 
Marine Hydrodynamics", in Three-Dimensional Models of Marine and 
Estuarine Dynamics, (J. C. J. Nihoul and B. M. Jamart, eds.), 
Elsevier, In Press. 

Sheng, Y. P., 1987:  In preparation. 

Sleath, J. F. A., 1984: "Measurements of Mass Transport Over a Rough 
Bed", Proc. 19th Intl. Conf. Coastal Eng., ASCE, pp. 1149-1160. 




