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ABSTRACT 

This paper is aimed to investigate theoretically and ex- 
perimentally the variations of the probability distribution 
and mean values of the run length and total run length of 
just breaking and broken waves in an irregular wave train on 
gentle slopes.  The theoretical model developed here is shown 
to be valid for evaluating the lengths of runs of just and 
broken waves from deep water up to the shoreline. 

INTRODUCTION 

Different from regular waves, the individual waves in an 
irregular wave train do not break at one specific location, 
but break at many different locations on sloping bottom,since 
their wave height and wavelength are different each other, in 
general.  The estimation of the probability of successive 
breaking waves and its mean value is basically very important 
for coastal engineering problems.  Although many theoretical 
modelsl)-5) have been proposed to estimate variations of the 
probability of wave breaking and wave statistics such as the 
mean, one-third and one-tenth largest wave heights, there has 
been no literature dealing with lengths of runs of just break- 
ing and broken waves in an irregular wave train on sloping 
bottom. 

With this background in mind, this paper is to discuss the 
variations of the probability of wave breaking and lengths of 
runs of successive just breaking and broken waves from deep 

*  Dr. Eng., Professor, Department of Civil Engineering, 
Nagoya University, Nagoya, Aichi 464, JAPAN. 

** M. Eng., Civil Engineer, Nitsuken-Design Co.,Ltd.,Civil 
Engineering Design Office, Osaka, Osaka 541, JAPAN. 

1210 



IRREGULAR WAVE TRAIN 1211 

water up to the shoreline on gentle slopes.  First of all, 
the theoretical model is described to estimate the probability 
distribution and mean value of the lengths of runs of just 
breaking and broken waves for a given probability of occur- 
rence of just breaking and broken waves.  Next, a theoretical 
model is presented to estimate the probability of occurrence 
of just breaking and broken waves on gentle slopes.  The nu- 
merical method combining the two theoretical models is pro- 
posed to evaluate the variation of the probability distribu- 
tion  and mean values of the lengths of runs of just breaking 
and broken waves for various kinds of waves on gentle slopes. 
Secondly, laboratory experiments are carried out to investi- 
gate the variation of the probability distribution and mean 
values of the run and total run lengths of just breaking and 
broken waves as well as to examine the validity of the numer- 
ical method on gentle slopes.  The validity of the method pro- 
posed here is verified by the laboratory experiments.  Using 
the method,  the diagrams are presented to evaluate the vari- 
ation of the mean run length and mean total run length of 
broken waves of 6 kinds of irregular waves on gentle slopes 
of 1/10,1/20,1/30 and 1/50. 

2.  DEFINITION OF RUN LENGTH AND TOTAL RUN LENGTH OF JUST 
BREAKING AND BROKEN WAVES 

A run length of just breaking wave is defined by the se- 
quence of a just breaking wave.  A total run length of just 
breaking wave is defined by the number of waves between a 
group of just breaking waves and the next occurrence of a just 
breaking wave by the succeeding group of waves.  The same def- 
inition is made to the run length and total run length of bro- 
ken wave. The just breaking wave   defined in this paper is an crit- 
ical wave just at the inception of breaking and has little air 
bubble. The broken wave defined here includes waves in the trans- 
formation process immediately after the inception of breaking 
as well as air-entrained waves with a turbulent water surface. 
We permit here, however, for the sake of convenience of treat- 
ment that the broken wave includes the just breaking wave. 

The run length (Jl) and the total run length (El) of the 
just breaking wave, in the case shown in Fig.l, are Jl=3 and 
El=6.  On the other hand, the run length (J2) and total run 
length (E2) of the broken wave are J2=4 and E2=6, as indicated 
in Fig.l.  It should be noted that the broken wave includes 
the just breaking wave, as stated above. 

3.    NUMERICAL METHOD 

3.1  Estimation of run length and total run length 
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E^   =   6, E2  =  6 
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J2  =   4 

Jl   -  3      ^ 
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Fig.l  Schematic illustration of definition of run length 
and total run length of just breaking and broken waves. 

Based on the random process which successive waves are un- 
correlated, the probability distributions of run lenghts, Jl 
and J2 and total run lengths, El and_E2 of just breaking and 
broken waves and their mean values, Jl, J2, El and E2 are ex- 
pressed by6),7) 

n,Fn. [PJB-QNB](P
E
I-
1
 oEl"1) Q1(E1)" P•-n>,D 

(PJB   QNB  ; P1(Jl) = pJl-1 0 rJB • yi NB 

Jl- 1/d " PjB): 

-JB QNB = i 

EI= 

IPJB-QNB 

1/PJB(1 
PJB> (1) 

P2(J2)- .B 

J2= 1/d 

&-1 % 

PR) 

DB +  QN = 1 

nrF^-fPB,QN ) (   PE2_1 Q^    IVVJ   
B 

E2= 1/PR(1 - Pp) rB B' 

.E2-1, 

(2) 

In Eqs.(l) and (2), P(Jj_) is the probability of occurrence of 
the run length Jj_, Q(E-j_) the probability of occurrence of the 
total run length E-j_, J^ the mean run length and Ej_ the mean 
total run length, where subsuffix i is either 1 or 2 and i=l 
and i=2 mean respectively the quantity regarding the just 
breaking and broken waves.  Pjg in Eq.(l) is the probability 
of occurrence of the just breaking wave, and QNB in Eq.(l) is 
the probability of non-occurrence of the just breaking wave. 
Pg and QN in Eq.(2) are the probability of occurrence and non- 
occurrence of the broken wave, respectively.  Therefore,given 
PjB and QNB» tne probability distributions of run length and 
total run length of the just breaking wave,P(Ji) and Q(E]_),and 
their mean values,Ji and E]_ are calculated with Eq.(l).  Sim- 
ilarly, given Pg and QJSJ, the probability distributions and 
mean values of run length and total run length of the broken 
wave are evaluated with Eq.(2). 
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3.2 Estimation of probability of occurrence of just breaking 
and broken waves 

The theoretical model developed here to obtain PJB»QNB>PB 
and QN follows basically that of Sawaragi and Iwata-^T.  In- 
dividual waves in an irregular wave train are assumed to be 
uncorrelated each other and to experience independently shoal- 
ing and breaking.  In addition, once an individual wave breaks, 
the wave is assumed to keep broken up to the shoreline on gen- 
tle slopes. 
(1) Shoaling condition: 
The shoaling condition presented for regular waves, which 

is based on the linear wave theory, is employed, 

Hc 

Ks ( tanh kh + kh(l-tanhz kh)) 
1/2 (3) 

where Ks is the shoaling factor, Ho the equivalent wave height 
in deep water, Hs the wave height at the depth of h and k the 
wave number ( = 2TT/L; L the wavelength at the depth of h) . 

(2) Breaking limit: 
Modifying the breaking limit presented by Goda2) for regu- 

lar waves, the following equation is used for the 1st approx- 
imation. 

Hb/Lo = 0.15(l-exp(1.5Tr(hb/Lo) (1-15S 4/3 ))) (4) 

where Hb is the wave height at breaking point, .hb the still- 
water depth at breaking point, Lo the wavelength in deep wa- 
ter and S the bottom slope.  Eq.(4) has been shown to provide 
a good approximation for the breaking limit of individual 
waves in an irregular wave train8),9), 

(3) Mean water level variation from stillwater level: 
The mean water level n at the depth of h is calculated 

bylO), 

dx 
1 2kh  d, 1H2(I +   

(fi+ri) dx11 8 K2  + sinh 2kh )) (5) 

where H^ is the mean square wave height, x the horizontal dis- 
tance and in the mean water level height from the stillwater 
level.   In the numerical calculation, the following equation 
is employed in place of Eq.(5), 
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where subsuffix j indicates the location of calculation. 
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(4) Probability of occurrence of just breaking and broken 
waves, PJB and PB: 

As stated in Section 2, the broken wave includes the just 
breaking wave.  Therefore, the probability of occurrence of 
the broken wave, PB at the depth of h* can be obtained by 
integrating the probability of occurrence of just breaking 
waves, PJB from deep water to the water depth, h*; 

PB(h*) PjB(h) dh 
h* 

(7) 

The probability of occurrence of the just breaking wave, 
PJB(h) at the depth of h is determined by the ratio of the 
number of waves which satisfy the breaking limit to the total 
number of waves at the depth.  Using Eq.(7), the probability 
of occurrence of just breaking waves, (PjB(h))j between the 
depths, hj-l and hj can be described by 

(PjB(h))j = ((PB)j - (PB)j-l)/(hj_1 hj> (8) 

where hj_i is larger than hj, and (PB)j and (PB)j-l are the 
probability of occurrence of broken waves at the depth of hi 
and hj-l. J 

3.3  Procedure of calculation 
Based on the previous studies2).3)j the stillwater depth, 

h on the sloping bottom was divided into many numbers of por- 
tion, as illustrated in Fig.2.  The non-dimensional variation 
of the stillwater depth, Ah/Ho in the portion was varied ac- 
cording to the change of dimensionless stillwater depth, h/Ho. 
That is, Ah/Ho =1.0, 0.25 and 0.1 were chosen for h/Ho=5-30, 
h/Ho=2-5 and h/Ho£2, respectively.  The calculation was done 
by the step-by-step method2)>3)>'), using the waves given at 
deep water as an input wave condition.  Two kinds of waves 
such as the waves generated in a wave tank which will be men- 
tioned later and the theoretically proposed waves expressed 
by Eq.(12) in Section 5. 

The outline of calculation method in case of the experi- 
mental waves is described in this section.  Assuming that the 
wave period and total 
number of individual 
waves are constant 
from deep water up to 
the shoreline, the 
variation of the wave 
height due to shoaling 
was calculated with 
Eq.(4) until the wave 
arrived at the shore- 
line.  The wave which 
exceeded the breaking 
limit of Eq.(4) was 
treated as the broken 
wave.  The probability 

Ah 

Ah/Ho=0.1 

Ho ; significant 
wave height 
in deep water 

h/Lb-1.0 

Deepwater 
condition 

Fig.2  Schematic illustration of vari- 
ation of Ah due to change of still- 
water depth, h. 
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density corresponding to the broken waves was re-distributed, 
in proportion to that of non-broken waves, to the probability 
density of non-broken waves in order to determine H2 and fi 
with Eq.(6).  The detailed calculation technique is referred 
to the references 2), 3), 7) and 9). 

The probability of occurrence of broken waves, PB(h) at 
the water depth of h is obtained by the ratio of the total 
number of broken waves from deep water up to the depth, h to 
the total number of waves at the depth of h.  The probability 
of occurrence of just breaking waves, PjB(h) between the 
depths, h+Ah/2 and h-Ah/2 can be calculated with Eq.(8),where 
Ah is a small quantity. In the calculation,Ah given by the 
following equation was employed to evaluate PjB(h), 

Ah/Ho =(Ax/Ho) S = 1.5 S 

where Ax is a small increment of horizontal distance and Ax 
is taken 1.5 times the one-third largest wave height, Ho in 
deep water.  The reason of this is that the width of coastal 
and.offshore structures is around 1.5 times the design wave 
height.  Using PB(h) and PjB(h) thus calculated, the proba- 
bility distribution and mean value of lengths of runs of just 
breaking and broken waves are easily determined with Eqs.(l) 
and (2). 

LABORATORY EXPERIMENT 

4.1  Equipment and procedure 

In the experiment, an indoor wave tank in 0.95m height, 
0.7m width and 25m length at Nagoya University was used. The 
experimental set-up is illustrated in Fig.3.  A flap-type 
wave generator controlled by Oil-Pressure Servo was installed 
at one end of wave tank.  The water is perfectly shut out 
from the area behind the wave board.  Therefore, the input 
electrical signal is smoothly converted to the wave motion. 
At the other end of wave tank, the wooden uniform slope was 
installed.  Two kinds of slopes such as 1/15 and 1/30 were 
used.  Three kinds of irregular waves (W.-2.W-3 and W.-A in 
Table 1) were generated to have a Bretschneider spectrum as 
an expected spectrum.  One irregular wave (W.-l in Table 1) 

=1/15 wave gauges 

o 

700 

wave 
generator 

QJ) 16mm cine-camera   (unit; mm) 

Fig.3  Schematic view of experimental set-up. 
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Table 1 Experimental waves 

Bottom 
Slope Case H (cm) T(s) Hl/3(cm) Tl/3(s) Ho (cm) Qp fc (Hz: I Wave 

1/15 
Case 1 

Case 2 

11.2 

6.1 

1.4 

1.0 

13.8 

9.3 

1.3 

1.1 

14. 

9. 

,9 

.8 

7.03 

1.97 

0. 

0. 

45 

.30 

W. - 1 

W.- 2 

Case 3 8.4 1.0 12.5 1.1 13. .4 1.80 0. .35 W.- 3 
1/30 

Case 4 3.9 0.9 6.0 1.1 6. .4 1.52 0. 30 W.- 4 

H; mean wave height, T; mean wave period, Hl/3; significant wave height 
Tl/3; significant wave period, Ho; significant wave height in deep water 
Qp; spectral peakedness, fc; peak frequency of power spectrum 

was generated to have double peaks on its power spectrum. Some 
of their spectral and statistic values are given in Table 1. 

The water surface profiles were not only measured by capac- 
itance-type wave gauges, but also simultaneously filmed, 
through glass side wall,by a 16mm high speed cine-camera (50 
frames/s) in order to obtain the one-to-one correspondence 
between the waves in time domain and those in spatial one. 
This enabled us to omit noise-like small waves frequently 
observed in the surf zone as well as to classify clearly the 
waves into the just breaking, broken and unbroken waves. The 
measuring time of waves was about 12 minutes.  Water surface 
profiles measured by the wave gauges were recorded on magnetic 
tapes.  The irregular waves (W-l,W-2,W-3 and W-4) were gener- 
ated 5 or 6 times so that the waves at 25 different points 
located from h=63cm up to near the shoreline were possible to 
be measured. 

4.2 Data analysis 

The irregular wave was analyzed by both the wave-by-wave 
and spectral analyses.  The individual wave in an irregular 
wave train was defined by the zero-downcrossing method.  The 
water surface profile was sampled at every 0.1 s.  The wave 
power spectrum was calculated by B-Tll- 'method with data of 
4800 points.  The maximum lag number and degree of freedom 
were 80 and 120, respectively. 

Anlayzing 16mm motion films by means of a film motion an- 
alyzer, all the individual waves were carefully classified 
into the just breaking, broken and non-broken waves. Special 
care was paid to determine the just breaking wave, since the 
just breaking wave is defined, as stated already, as the crit- 
ical wave with little air at the inception of breaking.  The 
breaking point and wave height at the breaking point were all 
determined by analyzing the 16mm motion films with help of 
wave data taken by the wave gauges.  The high pass filter 
was used to eliminate the surf beat from wave profiles near 
the shoreline so as to definitely obtain the individual waves. 
The number of individual waves generated at the wave board in 
experiments was 420, 520, 595 and 550, for the waves of W.-l, 
W.-2, W.-3 and W.-4, respectively. 

4.3 Results and discussion 
Figure 4 shows one example of time series of successive 

206 individual waves in the case of wave, W.-l, where symboles 
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D and • indicate, respectively, the just breaking and broken 
waves.  The wave without the symboles is non-broken wave. 
Therefore,most of individual waves at the depth of h/Ho=2.11 
in Fig.4 are the non-broken wave.  With the irrgular wave ap- 
proaches to the shoreline, the number of the just breaking 
wave increases to a maximum and then decreases.  The maximum 
occurrence of just breaking waves in Fig.4 is around h/Ho = 
1.01.  On the other hand, the number of the broken wave in- 
creases continuously as the irregular wave train propagates 
to the shoreline and most of the individual waves become the 
broken wave, as indicated in Fig.4. 

h/H0' 

2.114 

1.912 

1.678 

1.563 

1.342 

1.141 

1.007 

0.852 

0.671 

0.476 

•    .                     . n             .                           .            n • 

n     n •n    •               n n ..             .     n n 

nm. ..                         ...nrtrfi.nnn.              • 

nn.   . nn 

inn.li nrwuiJi Jinn,_ji.    jn.rk     n  .    ru    nnn.    nnnnnnn  nrm., .nm rm nn mm   n.nn ru m nn 

.... jinn—n_n—njuamn ji..n n. run n .m nruk .nnrk. AVUA n—« .jun-n..nji- rk-jut JU.n.niiui 

 i      f      i      i i  

0 50 100        150 200 
Fig.4  Time seires of successive 206 waves (Ho; significant 
wave height in deep water). 

(1) PjB and PB 

As shown in Fig.5, PJB increases to a maximum and then de- 
creases as the irregular wave approaches to the shoreline. 
The experiments showed that the maximum value of PjB is 0.29 
at h/Ho=1.14, 0.24 at h/Ho=1.00, 0.11 at h/Ho=0.83 and 0.14 
at h/Ho=l.l, respectively, for the wave, W.-1,W.-2,W.-3 and 
W.-4.  PjB(h) is given here by PB(h-Ah/2)-PB(h+Ah/2),and Ah= 
1.5SHo, as in Eq.(10).  The theoretical values estimated with 
Eqs.(3)-(10) are  shown in Fig.5.  At the same time, the the- 
oretical values estimated with Eqs.(4)-(10) and Eq.(ll) in 
place of Eq.(3) are shown for comparison. Eq.(ll) was pro- 
posed as the shoaling condition for finite amplitude regular 

H/Ho = Ks ;   gHT2/h2£30 

Hh2/7  c  t ;30<gHT2/h2<50   (11) 

Hh5/2(/gHT2/h2- 2/3)= const.;   gHT2/h2>50 

waves by Shuto^2).  In Eq.(ll), g is the gravitational accel- 
eration, T the wave period.  The theoretically estimated val- 
ues agree quantitatively well with experimental ones. There 
are, however, some discrepancies about a maximum value of PJB 
between the calculations and experimental values.  The main 
reasons of this may be (i) Eq.(4) is not a better equation, 
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0.3 

PJS 

0.2 

0.1 

rt 

0.3 

Eq.(3), p 

Eq.(ll) 
J8 

Wave, W.-  1 
S=l/15 

0.2 

Xh^LOn 
0.5 1.0 

-0 

Eq.(3) 

Eq.(H) 

Wave, W.-3 
S=l/30 

1.5 2.0 2.5      0 0.5 1.0 
h/H0' 

(a)    CASE  1     (S=l/15,  H„7L0=0.053) (b)    CASE 3    (S=l/30,  H07 L0=0.070) 

1.5   2.0  , 2.5 
h/Ho1 

Fig.5  Variation of PJB with decreasing of water depth. 

and (ii) number of waves in the surf zone decreases, in the 
worst case, to 90% of the number of waves generated at the 
wave board in the experiment. 

The probability of occurrence of broken waves, PB becomes 
continuously large, as shown in Fig.6, as the wave approaches 
the shoreline.  The agreement of calculated values with ex- 
perimental ones is much better than the case of PJB.  It can 
be said that PB is well predicted by the numerical model pro- 
posed in this paper.  Figure 6 shows that 98% of the wave,W. 
-1 and about 80% of the wave, W.-3 are broken waves at the 
non-dimensional water depth h/Ho=0.5. 

Figures 5 and 6 show that theoretical values estimated 
with Eq.(3) as shoaling condition seem to be in better agree- 
ment with experimental values more than ones estimated with 
Eq.(ll) as shoaling condition. 

0.5    1.0   1.5    2.0    2.5 0 
h/H0' 

(a) CASE 1 (S=l/15, H07 L0=0.053) 

1.0   1.5    2.0    2.5 
h/H0' 

(b)    CASE 3 (S=l/30, H07L0=0-070) 

Fig.6  Variation of PB with decreasing of water depth 
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(2) PKJ1), P2(J2), Ql(El) and Q2(E2) 
Figures 7 and 8 show some examples of Pl(Jl) and Ql(El), 

and P2(J2) and Q2(E2), respectively.  Concerning Pl(Jl), the 
probability of run length Jl=l, Pl(l) is predominantly large, 
compared with Pl(2) and Pl(3).  Pl(3) is negligibly small even 
at h/Ho=1.066 where PJB becomes maximal.  On the other hand, 
the probabilities of total run lengths, Ql(l), Ql(2),Q1(3), 
Ql(4) and Ql(5) are the same order, although Ql(El) tends to 
decrease as El becomes large. 

The probability distribution of run length of broken waves, 
P2(J2) differs from that of Pl(Jl).  P2(2),P2(3),P2(4) and 
P2(5) are comparatively large, compared with P2(l).  In case 
of Pl(Jl), Pl(l) decreases to a minimum and then increases, 
and Pl(2) and Pl(3) increase to a maximum and then decrease 
as the waves advance to the shoreline (see Fig.9).  In con- 
trast, P2(l) decreases almost monotonously.  The location 
where Pl(l) becomes a minimum and Pl(2), P2(2) and P2(3) take 
a maximum value correspond to the location at which PJB be- 
comes maximal.  The theoretically estimated values are in 
good agreement with experimental values.  The calculation 
method which employs Eq.(3) as the shoaling condition seems 
better than one using Eq.(11) to evaluate Pi(Jl),Ql(El),P2(J2) 
and Q2(E2). 

Qi(E 

Fig. 7     Probability  distributions   of  J]_  and Ex. 

50 
(*) 

Q2(E2) 

100 

(%) 

P2(02) Case 2 
S-l/15 
Wave,  W.-  2 
(Total   length)      50 

h/Ho=1.001 
n 

Eq.(3) 

Eq.(ll) 

10     E,       15 

Case 4 
S=l/30 
Wave, W.- 4 

100 

(%) 

P2{J2) 

h/Ho«0.784   50 

(Run length)1^! (Total 1en9th> 

Eq.(3) 

Eq.(H) 

10 E, 15 

Fig.8  Probability distributions of J2 and E£. 
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(%) 

Case  1 
S=1/1S 
Wave.W.-  1 

p,{1) P,{2) 
o—o a—a Experi. 
9---0 A.--* Eq-(3) 

•---• ^     ^ Eq.Cll) 

50 

h/H„' 

Case 4 
S=l/30 
Wave, W.-4- 

Ml) M!) P,(3) __^- ' 
o—0 O G D O Experi. 
0--0 t—a. a---a Eq.(3) 

Eq.(ll) 

2.0 2.5 
h/H0' 

Fig.9     Variation  of  P]_(l)(P]_(2),P2(l),P2(2),?z(3)   with h/Ho. 

(3)   Ji,   J2»   Ei  and  E2 

The mean run length of just breaking wave, Jl never exceeds 
2.0 from deep water up the shoreline, as shown in Fig.10. The 
maximum value of Jl was 1.33, as given in Table 2.  This fact 
means that two waves never break successively on average. 
There is discrepancy between experimental and calculated val- 
ues, especially around h/Hosl at which PJB becomes maximal. 
This reason is that the theoretical model cannot estimate 
well PJB around h/Ho=l,at which waves break most frequently. 

The mean total run length of just breaking wave, El de- 
creases to a minimum and then increases as increase of h/Ho, 
as shown in Fig.11.  El is strongly related to PJB and El in- 
creases with decreasing of PJB.  The difference between ex- 
periments and calculations is due to the reason that the the- 
oretical model cannot estimate very well PJB, as stated above. 

o—o Experiment 

*--•<> Eq . (3)        Ei 
-  - Eq.Cll)       ,oo 

50 

h/H0 

Fig.10  Variation of J\  with 
h/Ho. 

0—o  Experiment f 
0--0  En.(3) / 
•---«  EQ. (11) / .. 

/  / 
-    Case 2 / / 
-    S-l/15 f' >'   / 
_    Wave,  U.- 2 //   / 

/'/ 
V         '**-"'$ 

:       *   N*"'        / 
'-              "-*/       h' 4 

.i]i, 

.5    2.0 
h/Ho 

Fig. 11 Variation of E]^ with 
h/Ho. 

Table 2 Experimental values of Jlmax,Elmin and E2min. 
Bottom 
Slope Case Ho/Lo J^max Elmin E2min Wave 

1/15 Case-1 0.053 1.33 4.26 3.92 W.-   1 
1/15 Case-2 0.050 1.25 5.07 4.14 W.-   2 
1/30 Case-3 0.070 1.09 8.93 4.68 W.-   3 
1/30 Case~4 0.031 1.24 8.12 3.89 W.-   4 
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Figures 12 and 13 show variations_of J2 and E2 with h/Ho. 
The mean run length of broken waves,J2 increases continuously 
from 1 with h/Ho decreases.  The variation of J2 with h/Ho is 
very similar to that of Pjs.  Since the theoretical model es- 
timates very well PB, the agreement between calculated and 
experimental values is very good^ The variation of E2 with 
h/Ho is very similar to that of El.  E2 becomes minimal at the 
location where PJB becomes_maximal.  According to Eqs.(l) and 
(2), the minimum value of El and E2 is 4. The minimum values 
obtained in the experiments was, as given in Table 2, more 
than 3.9, which is very close to A.  Therefore, it may safely 
be said that the random process model which considers no cor- 
relation between waves is a good model to evaluate accurately 
the lengths of runs of broken waves. 

o—o Experiment 

O---0 Eq.(3) 

•—• Eq.(U) 

0.5    1.0 

Fig.12  Variation of J2 

with h/Ho 

500 o—o Experiment 
o---o Eq. (3) 

h •---* Eq.(ll) 

100 / , 
50 L   Case 4 

S=l/30 
Wave, W.-4 

: /y 

10 

5 

'-                                    a^ * 

E2 = 4 

i        p        i        i 

5    1.0     1.5 

Fig.13  Variation of E2 with h/Ho. 

2-° h/H„- 2-5 

5.  DIAGRAMS OF J2 and E2 

The theoretical model proposed in this study has been 
shown to evaluate well the lengths of runs of broken waves. 
Therefore, we try here to calculate the variation of the mean 
run and total run lengths, J2 and E2 with wave propagation 
from deep water to the shoreline on gentle slopes. 

5.1  Calculation method 

In the numerical calculations, 4 kinds of bottom slopes 
such as 1/10,1/20,1/30 and 1/50 and 6 kinds of waves such as 
Ho/Lo=0.002,0.005,0.01,0.02,0.04 and 0.08 were employed. The 
irregualr wave given by the following equation was employed 
as the deep water wave in order to obtain the diagram of J2 
and E2 . 

•*3 lu^2 
P(H*,T*)=1.35H*-T*Jexp(-( fi*^  + 0.675T*4)) (12) 

Here, H*=H/H, T*=T/f, and H and T  are the mean wave height 
and period, respectively.  The wave given by Eq.(12) was di- 
vided into 14400 rectangular meshes, i.e., 14400 individual 
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waves, as indicated in Fig.14.  The 
wave in each grid,i.e., the individual 
wave is treated to experience shoaling 
and breaking. Once the wave breaks, 
the wave was assumed to keep broken up 
to the shoreline, and no correlation 
between waves was considered.  The cal 
culation method adopted was the same 
as that described in Section 3-1, and 
Eq.(3) was employed as the shoaling 
condition, since Eq.(3) was judged to 
be better than Eq.(ll) as the shoal 

p(H/H) 

p(T/T)i 

Fig.14  Joint proba- 
ing condition, as stated in Section 4. bility distribution 

5.2  Results and discussion 
function of wave height 
and period. 

Figures 15 and 16 show_variations of the mean run length, 
J2 and total run length, E2 with h/Ho on gentle slopes such 
as 1/10,1/20,1/30 and i/50. J2 increases rapidly as h/Ho be- 
comes small, as indicated in Fig.15.  In addition, Fig.15 
shows that the smaller the wave steepness,Ho/Lo and the gen- 
tler the bottom slope, the larger_becomes h/Ho at which J2 
grows up rapidly.  Concerning to E2, E2 decreases to the min- 
imum value of 4 and then increases as shown in Fig.16.  The 
dimensionless water depth h/Ho at which E2 is minimal becomes 
larger as the wave steepness becomes smaller and bottom slope 
becomes gentler. 

6.  CONCLUDING REMARKS 

In this paper, the variations of probability distribution, 
mean run and total run lengths of just breaking and broken 
waves on gentle slopes have been discussed, based on labora- 
tory experiments and theoretical calculations.  The theoreti- 
cal model proposed here is shown to be valid and the random 
process model is powerful, especially for evaluating the char- 
acteristics of the probability distribution, mean run and 
total run lengths of broken waves. 
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