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ABSTRACT 

A numerical model of wave-Induced nearshore currents taking into 
account the finite amplitude effect is developed, with a cnoidal wave 
theory used for the estimation of wave characteristics. The model is 
applied to the computation of wave transformation and nearshore currents 
on uniformly sloping beaches and on two-dimensional model topographies. 
The comparison with the results obtained by a linear model shows that 
wave nonlinearity has a strong influence on wave transformation in shoal- 
ing water and in the surf zone and on the strength of nearshore circula- 
tion, but that it does not have much effect on the longshore current pro- 
file. Moreover, the validity of the present model is supported by the 
quantitative agreement with the experiment for wave height variations, 
and the qualitative correspondence with the experiment for mean water 
level variation and longshore currents and the observation for nearshore 
currents. 

1. INTRODUCTION 

In most nearshore current models, the small amplitude wave theory 
has been used for the calculation of wave transformation in shoaling 
water, the resulting radiation stress which is a driving force of near- 
shore currents, and the wave-induced bottom shear stress. Since the ef- 
fect of wave nonlinearity becomes more and more predominant just outside 
and inside of the surf zone, a nearshore current model taking account 
of the finite amplitude effect is needed for the purpose of better un- 
derstanding and description of the coastal phenomena. Nevertheless, 
there have not been any such numerical models of nearshore currents ap- 
plicable to an arbitrary bottom topography, although a few analytical 
models by James(1974) and Tsuchiya et al.(1979) using a finite amplitude 
wave theory, are available. 

Because of the above-mentioned situation, the aim of this study is 
to develop a numerical model of nearshore currents taking the effect of 
wave nonlinearity into account, in which cnoidal wave theories derived 
by both the Stokes first and second definitions for wave celerity are 
used for the estimation of wave characteristics and to clarify the model 
behaviour and its applicability by comparison with the results based on 
a linear numerical model, experiments of wave transformation and long- 
shore currents and observations of nearshore currents. 
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2. MODEL DESCRIPTION 

(1) Wave transformation model 

When the waves with wave number components (k ,k ) propagate on two- 
dimensional current (U,V), the governing equationsxofywave number com- 
ponents are derived from the irrotational condition of wave number com- 
ponents, the conservation equations of wave number components and the 
nonlinear dispersion relation of finite amplitude wave theory as 

, [d\(da./3k)cos0\ , d\(do./dk) smell 

=M te + ai J 
3V     ,3V     da. 3D    da. dH 

+ Kxdy    K"3x     3D dx    3H  dx 
(1) 

=4 d\(do./dk)cos8\    3|Qg./3A:)sinfl| 
dx dy 

,  dU     .   dU     da. 3D    da. dH 
+ K"3x    Kx3y     3D dy    dH dy 

in which k is the wave number, 6 the wave direction, 3a /3k the propa- 
gation velocity corresponding to the group velocity in the case of small 
amplitude wave theory,a  the relative angular frequency, D(=h+n) the 
total water depth including the mean water level variation n, h the 
still water depth and H the wave height. It is seen that the effect of 
wave nonlinear!ty is introduced into eq. (1) explicitely through 
(3a /3H)3H/3x and (3a /3H)3H/3y and implicitely through 3a /3k and 
3a /3D. The equations are written in the conservative form for the con- 
venience of their numerical integration using a finite difference method. 

The energy balance equation with the energy dissipation term due to 
wave breaking is given by Phillips(1969) as 

dt 

au      ay__Mx as«   M, dsx. 
dy       **dy     pD   dx      pD   dx 

Mx dS*r     My 3Sn 
pD   dy     pD   dy '• ~~Eb\ 

in which E is the wave energy, M and M the wave-induced mass flux 
n ~~   '*- x     y 

components, U and V the nearshore current components including the ef- 
fect of mass flux, F and F the energy flux components, S  , S  and 
S  the radiation stress tensor including the effect of mass flux and p 
the density of fluid. The nearshore current components and the integral 
properties are defined by the following expressions. 
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U = U + Mx/pD, V = V + My/pD 

M*=M cos0, My=Msin8, M= /  pudz 
J-D 

£„=£„+£», £„=,off?72,£«= ['p(u'+uf)dz/2 
J-D 

Fx=Fcos6, F»=F sin0 

F = £ \p{u'+ uf)/2+p+pgz\udz 

Sxx=SuCOs'6+S„sin'8-M'x/pD 
Sx„= Sir=(Sn- S„) cosd sine- MxMy/pD 

S„= S„ s\n'e+S„ cos'e-Mi/pD 

(3) 

S„= f'{flu'+p)dz-pgD'/2,    S„= [' pdz-pgD'/2 
J-D J-D 

In which £ is the surface displacement, u and w the wave-induced hori- 
zontal and vertical water particle velocity components, p the wave pres- 
sure, g the acceleration of gravity, E the potential energy, E  the 
kinetic energy, and the overbar means time average over one wave period. 

The estimation of energy dissipation due to wave breaking is done 
by either of two methods. The first one is to assume that the wave 
height exceeding the breaking wave height specified by the local charac- 
teristics of waves and water depth does not exist in the surf zone, and 
the breaker index used for the estimation of breaking wave height is 

H*r       .     .2*Dbr (4) 
tibr ^br 

in which L is the wave length and subscript 'br' means breaking waves. 
The coefficient in eq. (4) is the constant depending on the beach slope 
i, and a=0.131 for i=l/50 and a=0.142 for i=l/30 are chosen from the 
consideration of the Goda breaker index respectively. 

The second method is to rely on the bore model proposed by Battjes 
(1978). The energy dissipation rate due to wave breaking is expressed as 

B pgH'/glD (H\< __„„.,.,... (5) (£)', 7=0.7+5 ; "•""-if        L 
The  coefficient  for Kl/20  is  given by  Iwagaki  et  al.(1981)   as 

11-10 D/Dbr;0S<D/Dbr<l (6) 

5 ; D/Dbr<0.6 
B= 

In the numerical computation, the beach slope including the water sur- 
face slope 3D/3x is used rather than the beach slope itself. 

(2) Nearshore current model 

The equations used in the computation of nearshore currents are 
vertically-integrated continuity and momentum equations and they are 
written as 
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dpD    3MX    dM, 
dl      dx      dy    ° 

aw. 
at 

-ar+a^VM')+W(VM*)~"/'ffD3^ +a^lLZ>a?J 

, 3 /Tn3£.\   /as„as„.    \ 

in which    Mx=pDU,   M,=pDV . 
The Longuet-Higgins  expression(1970)   is  used as  the  lateral mixing  term. 

L=NcpUsD (8) 

in which 1 is the distance measured from the shoreline and N the late- 
x c ral mixing coefficient. The bottom shear stress is assumed to be propor- 

tional to the squared velocity, taking the wave orbital velocity into 
account. The definition of bottom shear stress components are given in 

Tto=pcAutCO&8+UW(u*cos6+UY+{ubsva0+ VY 

xby=pcjiubs\a$jr Vh/{ubcosB+ U)'+(ubs'mO+ V)' 

in which C. is the bottom friction coefficient in the wave-current sys- 
tem. Eq. (9) is numerically integrated by the Gauss-Legendre formula in 
each iterative computation. In the actual simulation, the values of N 
and C are fixed to be 0.01 and 0.01 respectively. 

3. WAVE CHARACTERISTICS AND INTEGRAL PROPERTIES OF CNOIDAL WAVES 

In the model, the wave characteristics and integral properties of 
waves are estimated from the second order solutions of the cnoidal wave 
theories derived using both the Stokes first and second definitions for 
wave celerity by Chappelear(1962) and by Tsuchlya & Yamaguchi(1972). 

The wave characteristics based on the Chappelear theory using the 
first definition for wave celerity are given for wave celerity c, wave 
length L and horizontal water particle velocity at the bottom u as 

c/^D=l + L,+L.(l - e)+5L,L, (1 - e) + L!|5+4*'-5(l + *')e|/3 

L/D=iK/j3C (10) 

ub/V9D=L.{l-e)+Ll(5+4x')/3-5U(l + *')e/3+5L,U\-e) 

-\L,x'+LW (l + *')+5L.L,x'|sn*/9x -L!*'snV? * 

in which K the modulus of the Jacobian elliptic function, e=E/K, K and 
E the complete elliptic integrals of the first and second kinds, sn the 
Jacobian elliptic function and Bx=2K(x-ct)/L. The expansion parameters 
LQ and L3 in the above expressions can be obtained from the following 
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equations as a function of K and H/D. 

L.K'\1 + U10+7X')/4+6L,\=H/D 
(11) 

2LJ+L.U'+e)+L5|-(l-6x
,-9/)/5+2(H-*')e!+6L.L,(*'+e)+Li=0 

Considering the relation that a ZD/g=(c//gD)kD, the partial deriv 
atives in eq. (1) can be computed from 

1  3<y. _-2* 3l(cA/gD)*Dl 

JjD  3* k'D'       d(L/D) 

1    c   ,n_H d\(c/VgD)kD\    L dlc/SgD)kP\ 
"2/ffD D       d(H/D) D       d(L/D) g   3D' 

(12) 

/ITjfo   &tc/SgD)kD\ 
y g   dH~      d(H/D) 

These expressions are estimated by the numerical differentiation of 
a vD/g computed as a function of L/D and H/D. 

The integral properties of the cnoidal waves were calculated by 
Yamaguchi(1977). However, it was found that the results for mass flux 
and radiation stress are not sufficient in order estimation. Recalcula- 
tion of these properties was attempted by using the exact relations be- 
tween the integral properties of finite amplitude waves. For example, 
the exact relation derived by Crapper(1979) was used in the calculation 
of radiation stress. 

S„ = 4£»-3£„+1oDui, S„=E„-E„+pDu\/2 (13) 

Fig. 1 shows two examples of the wave characteristics and integral 
properties non-dimensionalized by the results based on the small ampli- 
tude wave theory. The dimensionless propagation velocity 3a/3Tc in- 
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Fig. 1 Examples of wave characteristics and integral properties 
of cnoidal waves. 
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creases and the dimensionless energy flux F decreases with increasing 
values of T/g/D and H/D in the case of larger values of TVg/D. The ef- 
fect of the definitions for wave celerity on the wave characteristics 
and integral properties becomes more significant in the case of smaller 
values of T/g/D and D/H, and the difference becomes negligible with the 
increase of these parameters. It is noted that the small amplitude wave 
theory overestimates or underestimates the wave characteristics includ- 
ing the integral properties of waves and that because of the limitation 
to practical applicability, the cnoidal wave theory should be used in 
the range of T/g/D>12. 

4. NUMERICAL MODEL OF NEARSHORE CURRENTS 

(1) Finite difference formulation 

A finite difference method is used to solve the governing equations. 
Fig. 2 is the coordinate system used, in which x axis and y axis are 
taken in the offshore direction and in the longshore direction respec- 
tively. Finite difference approximation for the equations of wave number 
components and the energy balance equation which constitute the wave 
transformation model is made by forward difference in time and x direc- 
tion and by central difference in y direction. The continuity and momen- 
tum equations which make up the nearshore current model are discretized 
by the forward difference with respect to the time variable and by the 
central difference with respect to the space variables, and finite dif- 
ferencing of these equations is lagged a half step in time. Fig. 3 shows 
the configuration of variables in the finite difference model. Current 
components and bottom shear stresses are defined on the grid sides and 
all other variables are estimated at the grid center. 

The initial condition and the conditions for the offshore fixed 
boundary used in the nearshore current model are the usual ones. In the 
longshore direction, the periodic boudary condition proposed by E. Noda 
(1974) is imposed on all the variables relevant to the computation. In 
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Fig. 2 Coordinate system used in 
nearshore current model. 

Fig. 3 Configurations of variables 
in finite difference model. 
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the wave transformation model, the specified values of wave characteris- 
tics are given at the offshore boundary, but any conditions of wave 
characteristics at an onshore boundary are not required in the case of a 
straight shoreline because of the property of the finite difference 
method used. 

The computer program starts with determining the spatial distribu- 
tion of wave characteristics according to the analytical solution of 
wave transformation on the parallel bottom contour based on the small 
amplitude wave theory, and the wave characteristics at the first step 
are computed from the nonlinear wave transformation model. Then, the 
nearshore current computation is carried out using the radiation stress 
estimated from the wave transformation model,, Thus, one iteration is 
completed by these computations0 

A steady state solution is obtained by 1400 to 2000 iterations of 
alternating computations between wave transformation and nearshore cur- 
rents. At an early stage of iterative computation, the input wave height 
is increased gradually in order to avoid the appearance of numerical in- 
stability and to accelerate the convergence to a steady state solution. 
In the computation of wave transformation, the energy dissipation due to 
wave breaking is estimated by either the bore model or the breaker index 
model,when the wave height exceeds the breaking wave height given by eq. 
(4). 

(2) Interpolation of wave characteristics 

The wave information obtained directly from each computation of 
wave transformation is k ,k (L and 6) and E (=E -M /2pD)„ When the small 
amplitude wave theory is used, the effect or mass flux is usually neg- 
lected and then the wave height is easily computed from the relation 
that E =(l/8)pgH. On the contrary, when a cnoidal wave theory is used, 
it is not easy to transform from E to H and the numerical computation 
of the other wave characteristics is also time-consuming, because their 
expressions are lengthy and contain the elliptic integrals. 

In this study, the following method is adopted to save computer 
processing time. First, the numeric tables of the wave characteristics 
including the integral properties of waves computed in the range of L/D 
=5 - 150 every 1 increment and of H/D=0.01 -'1.30 every 0.01 increment 
are prepared in advance. The wave characteristics tabulated are c//gD, 
Oam/3k)//gD, /D|7g 3a_/3D ,,/PTg aom/3H, E /(pgD

2/8), Es/(pgD /8) , 
M/pD/gD, Su/pgD , S 7pgD, F/(pgDVgD), and K, LQ,  L3,  K and E required 
in the computation of u^. Next, a two-dimensional linear interpolation 
formula is applied to estimate the wave characteristics corresponding to 
the values of L/D and H/D obtained in each iteration. 

f=a'ftj+b'/u*< + c'fuU+d'fltu*> 

a'=(l-rXl-«),6'=r(l-5),c'=(l-r)s,(i'=rs ,,,, 
(.14) 

i=[L/D], j=[100(H/D)] 

r = L/D-[L/D],   s = 100W/O)-[l00(///£»] 

in which f is the interpolated value, f. . the value of f on the numeric 
table for the i-th L/D and the j-th H/D^tld [ ] the Gauss's symbol. The 
computation of sn function in the expression of u^, is obtained through 
the theta function in the usual manner, although an approximation such as 
sn gxs;tanh Bx is used in the case of K>1-10~§ 
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A similar method can be used in the conversion of Es to H. As Es/ 
(pgD2/8) is a function of H/D for a fixed L/D, the numeric table of H/D 
inverted as a function of Es/(pgD

2/8) can be made by applying the linear 
interpolation formula to the numeric table of E /(pgD /8). Two kinds of 
tables of H/D given as a function of L/D and Es/(pgD

2/8) are produced to 
keep the accuracy of interpolated results and to save computer storage 
memory, in which the range of Es/(pgD

2/8) are 0.001 - 0.15(0.001 incre- 
ment) and 0.15 - 1.50(0.01 increment) respectively. 

After all, the value of H/D corresponding to L/D and Es/(pgD
2/8) 

computed in each iteration can be interpolated from the H/D-tables, and 
then the wave characteristics for L/D and H/D can be evaluated by the 
application of the linear interpolation formula, eq.(14). It is empha- 
sized that since this method is applicable for not only a cnoidal wave 
theory but also another higher order finite amplitude wave theory, the 
incorporation of the theory into a nearshore current model is easily 
possible for its improvement. 

5. COMPUTATIONAL RESULTS AND CONSIDERATION 

(1) Uniformly sloping beach 

The computation is carried out on a plane beach with the slope of 
1/30 and constant water depth of h=8 m in the offshore region„ The fol- 
lowing input conditions are used; the incident wave height Hy=2 m, the 
wave period 1^=12.5 s and the incident angle of waves a-M(=Ti-6-^=30°. 
Suffix 'M' means the value at the offshore boundary. 

In Fig. 4, the results in the nonlinear model are depicted with 
those in the linear model developed by the authors(1983). Rapid increase 
of the wave height before wave breaking due to nonlinear shoaling and 
rapid decay of the wave height due to wave breaking are observed in the 
nonlinear model using the bore model, and the wave height after wave 
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Fig. 4 Change of wave height, wave direction and mean water level 
variation and longshore current profile on a uniformly 
sloping beach. 
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breaking based on the bore model diminishes more rapidly than that based 
on the breaker index model. While the wave direction in the linear model 
decreases steadily toward the shore, the wave direction in the nonline- 
ar model slightly increases just before wave breaking and it decreases 
steadily as well after wave breaking. This is mainly due to the wave- 
current interaction, because the tendency almost disappears when the ef- 
fect of the interaction is omitted in the computation. 

The wave setup and setdown in the vicinity of the breaking point in 
the linear model is much greater than those in the nonlinear model, be- 
cause the small amplitude wave theory overestimates the radiation stress 
in comparison with a finite amplitude wave theory, as is well known. It 
is also interesting to note that the current profile and the magnitude 
in the nonlinear model are similar to those in the linear model, al- 
though the peak position of the current profile in the nonlinear model 
is at a greater water depth. 

From the above argument, it is summarized that the wave nonlineari- 
ty has a strong influence on the offshore distribution of wave height, 
wave direction and mean water level variation, and the peak position of 
longshore currents, but that it does not have much effect on the long- 
shore current profile itself. 

Fig. 5 shows the results of wave height variation and the longshore 
current profile computed on a uniformly sloping beach with a longshore 
bar. The input conditions are the same as those for a uniformly sloping 
beach. It is assumed in the computation that the energy dissipation due 
to wave breaking does not occur on the inversely sloping beach. In the 
nonlinear model, the waves break after rapid increase of the wave height 
due to nonlinear shoaling on the offshore regularly sloping beach and 
propagate with loss of their heights on the inversely sloping beach. 
Then, the waves again increase their heights due to nonlinear shoaling 
on the onshore regularly sloping beach and finally dissipate their ener- 
gy after, the second wave breaking. On the other hand, in the linear mod- 
el, the waves break on the onshore regularly sloping beach after gradual 
change of the wave height with water depth variation. As a result, the 
longshore current profile in the nonlinear model has a two peak struc- 
ture, while the one in the linear model has a single peak structure as 
well as the result on a uniformly sloping beach. 

Thus, it can be said that the correct estimation of the breaking 
point is of great importance in the longshore current prediction on a 
bar-trough beach profile. 

Fig. 5 Change of wave height and longshore current profile on a 
uniformly sloping beach with a longshore bar. 
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(2) Two-dimensional bottom topography 

The bottom topography model developed by E. Noda(1974) is chosen to 
the computation of nearshore currents on a two-dimensional topography 
and it is expressed as 

h(x,  j/)=£x[l + M.exp{-3(^!)' }sin'{-|(y-xtan£)J] (15) 

in which i is the mean beach slope of 0.015, X the longshore beach 
length of 400 m, A„ the maximum amplitude of the bottom undulation of 20 
m and E the skewness of the bottom undulation of 0° or 30°. It should be 
noted that the above expression has different constants from the origi- 
nal one by E. Noda(1974). The model topography with e=0° and the one 
with e=30° are referred to as symmetrical concave topography and asym- 
metrical concave topography respectively. 

Fig. 6 describes the nearshore current pattern on a symmetrical 
concave topography with normal incidence of waves computed by both the 
linear and nonlinear models, in which the solid line is the contourline 
of water depth, and the dotted line indicates an approximate breaker 
line evaluated from eq. (4). Incident wave height HM is 1 m and the oth- 
er conditions are the same as in the case for a uniformly sloping beach. 
In both the figures, we can see the formation of a pair of dominant 
nearshore circulation cells centered on a breaking point and a pair of 
very weak and flat cells near the shoreline. But, the strength of cur- 
rent velocity in the nonlinear model is relatively weaker than that in 
the linear model and the center of the dominant circulation cell in the 
nonlinear model also locates in farther offshore region with the move- 
ment of the breaking point. 
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• Im/s breaker Index model 25m 
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Fig. 6 Nearshore current pattern on symmetrical concave topography. 
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Fig. 7 is the nearshore current pattern on an asymmetrical concave 
topography with oblique incidence of waves, in the case where the input 
wave height HJJ is 2 m. It is found in both the figures that the meander- 
ing longshore current is predominant and that a counterclockwise circu- 
lation cell is formed in the trough region near the shoreline by the ef- 
fect of concave bottom topography. The scale and strength of a circula- 
tion cell in the linear model are greater than those in the nonlinear 
model. 

It can be said from the two examples mentioned above that the wave 
nonlinearity acts so as to suppress the formation and growth of the 
nearshore circulation cell. 

When a method combining a wave ray technique with a linear interpo- 
lation formula is used for the numerical integration of the equations of 

Fig. 7 Nearshore current pattern on asymmetrical concave topography. 

bore model 

Fig. 8 Nearshore current pattern on curved bay. 
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wave number components and the energy balance equation, nearshore cur- 
rent pattern on a two-dimensional bottom topography with an arbitrary 
shoreline can be obtained as shown in Fig. 8, which demonstrates the 
predominant longshore currents in the outer region and a clockwise near- 
shore circulation in the inner region. 

6. VERIFICATION OF NEARSHORE CURRENT MODEL 

(1) Comparison with experiment 

Fig. 9 is the comparison of the computed results with the experi- 
mental ones for the change of wave height and mean water level varia- 
tion on a uniformly sloping beach of 1/34.26 conducted by Hansen & 
Svendsen(1979). As for the wave height variation, the result in the non- 
linear model using a cnoidal wave theory of the second definition for 
wave celerity rather than the first definition for wave celerity gives 
slightly better agreement with the experiment, and the linear model can not 
explain rapid increase of wave height before wave breaking. 

On the contrary, the nonlinear model underestimates the wave set- 
down and setup, although it can reproduce the qualitative trend in the 
experiment. In general, it has been known from experiments that the 
transition of wave setdown to setup does start from the plunge point 
rather than the breaking point. However, the present model, as well as 
the previous models, does not formulate this phenomena. The linear model 
overestimates the wave setdown in the vicinity of the breaking point and 
wave setup near the shoreline, although some fraction of the wave setup 
seems to agree well with the experimental results in appearance. 

Fig. 10 indicates the comparison of the computed result with the 
experimental one for longshore currents on a uniformly sloping beach 
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with the slope of 0.05 measured by Visser(1984). The current profile it- 
self in the nonlinear model is similar to the experimental profile and 
the location of the breaking point in the model is in good agreement 
with that in the experiment. However, in order to get a close agreement 
with the experiment, the computed result has to be shifted toward the 
shoreward by approximately the amount of the plunge point distance. 

(2) Comparison with observation 

Fig. 11 shows the nearshore current pattern re-evaluated from the 
observation of transport velocity by Sonu(1972) and the corresponding 
nearshore current pattern computed by the nonlinear model. In the model, 
the energy dissipation due to wave breaking is estimated by the bore mod- 
el, and a cnoidal wave theory based on the first definition is used. The 
input wave conditions given at the offshore boundary are that TM=5 s, HM 
==0.2 m and a^=0°. The bottom topography used in the computation is 
slightly modified to be periodic in the longshore direction and to have 
a straight shoreline. The model reproduces well the qualitative features 
of the complicated nearshore current pattern found in the observation, 
such as the onshore currents in both sides of the region and the rip 
currents in the central part of the region. But, in a quantitative sense, 
the model appears to give less velocity than the observation. 

 * 0.5 m/s 
observation 
Sonu(l972) 

Fig. 11 Nearshore current pattern observed by Sonu(1972) and the cor- 
responding result computed by the nonlinear model. 

7. CONCLUSIONS 

The main conclusions of this study are summarized as follows. 
i) A nonlinear model of nearshore currents was developed, in which the 

estimation of wave characteristics is based on a cnoidal wave theory. 
±L) The wave nonlinearity has a strong influence on the offshore distri- 

bution of wave height, wave direction and mean water level variation 
and the peak position of longshore currents, but it does not have 
much effect on the longshore current profile itself. 

itQ The wave nonlinearity acts so as to suppress the formation and 
growth of nearshore circulation currents. 

±z) The nonlinear model quantitatively predicts the change of wave 
height in shoaling zone and in the surf zone. It also qualitatively 
produces the mean water level variation, longshore current profile 
and nearshore circulation pattern. 
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v) It is necessary to make allowance for the effect of plunge point 
distance in the model formulation in order to obtain better agree- 
ment with the experimental data on wave setup and longshore currents. 
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