
CHAPTER 57 

COMPLEX ENVELOPE IDENTIFICATION OF WAVE GROUPS 

Rodney J. Sobey1  and  Han-Bin Liang2 

The complex envelope function is presented as the natural analysis technique for wave 
records where the identification of wave groups is a dominant interest. Algorithms have 
been developed and confirmed for separation of the complex envelope function, estimation 
of the dominant frequency and unwrapping of the phase function. Cross-correlograms and 
coherence spectra reveal a link between the envelope amplitude and phase traces that 
appears to be an intrinsic property of wave groups. Nevertheless, the majority of the 
information in typical wave records can be described as random, accounting for the 
relative success of the Gaussian random wave model. 

INTRODUCTION 

There is widespread acceptance of wave grouping in coastal and ocean design and 
considerable recent research effort has been focussed on the statistics of wave groups and 
the development of alternative analysis techniques to accommodate wave grouping. There 
is sufficient evidence from field records that wave grouping does exist but the specific 
nature and extent of wave grouping remains largely unresolved. It has been suggested, for 
example, that wave grouping is a direct consequence of the Gaussian random wave model, 
that it is a consequence of finely-tuned focussing of the phases of linear or non-linear 
wave trains, and that it is essentially a non-linear phenomenon, such as envelope solitons. 

The evidence must be sought initially from field data. Care must be taken, however, 
that the choice of analysis technique does not predetermine the data interpretation. 
Spectral analysis and zero-up-crossing identification of individual waves, for example, 
ignore the phase information in the record and implicitly favor the Gaussian random wave 
model description. This approach has proved to be useful and reasonably successful. It 
may ultimately prove appropriate but questions remain regarding the existence of useful 
phase information in the record. 

A natural analysis technique for wave grouping would appear to be the complex 
envelope function A(t), related to the wave record rj(t) as 

ri(t) = Real [A(t) exp(/wo0] (1) 

where w0 = 2JT/0 is the dominant frequency. No information is lost from the original 
record and attention can be focussed on the envelope modulation. For typically narrow- 
banded sea states, mod A(t) is an excellent approximation to the wave envelope, as 
recognized by Rice (1943, 1945) and Longuet-Higgins (1951) in the theoretical 
establishment of the Rayleigh distribution as an estimate of the probability distribution of 
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wave amplitude. Full advantage, however, has rarely been taken of the complete complex 
envelope function. It is the purpose of the present paper to evaluate its potential in the 
identification and perhaps quantification of wave groups. Several recent studies of wave 
grouping have adopted an envelope concept, all based on the application of a low pass 
moving average filter to i)2(0. the square of the wave record. Funke and Mansard (1979) 
used a filter with half-width l/(2fpA0 points in defining a smoothed instantaneous wave 
energy history. /p is the spectral peak frequency and A; is the discrete time step of the 
data record. W.C. Thompson, Nelson and Sedivy (1983) and E. F. Thompson and Seelig 
(1983) extended the filter half-width to l/(/pA/) points. These studies have shown the 
utility of the envelope concept but have not taken advantage of the phase information in 
the record.   In addition, filtering removes potentially valuable information from the record. 

COMPLEX DEMODULATION 

The potential of complex demodulation in the analysis and interpretation of periodic 
data has been elucidated by Bingham, Godfrey and Tukey (1966) and Hasan (1982). In 
principle, complex demodulation is a generalization of harmonic analysis, its objective 
being to extract the slowly varying amplitude R(t;u) and slowly varying phase $(«;w) of the 
signal component at frequency u. In general, the record will not consist solely of a 
perturbed sinusoid; it may be represented as 

r/(0 = R cos(ut + *) + r(t) 

= | R { exp[i(ojt + $)] + e\p[-i(ut +$)]} + r(t) (2) 

where r(t;w) is the residual noise signal.   Multiplying Equation 2 by exp(-/w/) gives 

ri exp(-!'w<) = i R exp(;'$) + \ R exp[-r(2w< + *)] + r exp(-w() (3) 

The second and third items in Equation 3 oscillate at frequencies 2u and w respectively, so 
that the smooth component (and hlsnce R and $) can be extracted by linear filtering 
(Bloomfield 1976). This procedure is appropriate in real time, regardless of the nature of 
the r?(0 data series. It will extract the slowly varying amplitude and phase at any 
nominated frequency w, and the complete spectrum can be established in this manner. 

The value of complex demodulation however is its ability to focus on a single 
frequency and herein lies its utility in wave record analysis. The spectra of surface gravity 
waves are consistently narrow-banded, to the extent that some dominant frequency u0 can 
be anticipated. The precise definition of w0 requires some further consideration but it is 
clear that it will be near the spectral peak. The complex demodulate at frequency w0 is the 
complex envelope function A(l). The residual r(t;u)0) in Equation 2 is consumed into the 
definition of A(t), so that A(t) represents the influence of all frequencies other than w0. 
This is Equation 1. A narrow-banded data series is clearly essential to the utility of the 
complex envelope function, as a wide band width would destroy the essential envelope 
interpretation of A(t). 

The complex envelope function appears to have been introduced by Rice (1944). His 
interest however was only in the amplitude function R(f), which he termed the envelope. 
This Rice envelope function formed the basis of his establishment of the Rayleigh 
distribution as the probability distribution for the amplitudes of narrow-banded random 
noise. This result was adapted to surface gravity waves by Longuet-Higgins (1951) and 
has proved remarkably successful. Potential information in the phase function $(f) was not 
considered. 
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COMPLEX ENVELOPE FUNCTION 

The filtering technique implied above is certainly appropriate but advantage can be 
taken of the computational efficiency of the FFT algorithm (Sobey & Colman 1983). This 
requires a specific assumption about the data series, namely that it represents a stationary 
process. This same assumption is also implicit in traditional spectral analysis of wave 
records leading to the variance spectrum. That it is a reasonable assumption is well 
established. 

The initial step (Deutsch 1962) is to establish the Hilbert transform r){t) of the data 
series rj(t): 

oo 

nd) =;i     *iT (4) I f    m 
!T t 

J-OO 
•T 

The Fourier transform of rj(t) is 

F(w) n(t) exp(-;'w/) dt (5) 
-oo 

and it follows from Equation 4 that F(w), the Fourier transform of ij(0. is 

«F(u) for u> > 0 
F(u>)  =   •(       0 for w = 0 (6) 

+ (F(w) for OJ < 0 

Computationally,   the   Hilbert  transform  can  be  established  from  the  inverse  Fourier 
transform of F(ui). 

The record and the Hilbert transform are combined to establish the pre-envelope 
function: 

m = UM + m (7) 

which in turn can be shown (Deutsch 1962) to be 

z(t) = R(t;u>) exp[i$(t;ui)] exp(iwt) (8) 

Multiplying through by exp(/utf) recovers the complex demodulate at frequency w. 

To specifically recover the complex envelope function requires knowledge of the 
dominant frequency u>0. Physically, w0 must be reasonably close to the peak frequency w0, 
which can be estimated from the variance spectrum (Sobey & Young 1986) as 

wp = J" u E*(u) dw I J F*(w) du> (9) 

Adopting w   as a first guess oi„ at the dominant frequency, the correction of w   towards w0 
follows Bolt and Brillinger (1978).   At the dominant frequency, Equation 8 is 

z{t) = /{(f;w0) exp[i*(f;w0)] expO'oy) (10) 
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where the complex envelope function is 

A(/) = R(t;u0) exp[/$(f;w0)] (11) 

Multiplying both sides of Equation 10 by exp{-mgt) gives 

z(t) exp(-wg0 = R(t;u0) exp{![*(/;w0) + (w0 - wg)/]} (12) 

The estimate wg may be corrected to w0 by estimating and removing any linear trend, 
identified as (w0 - w )t, in the phase record. In practice, this procedure requires phase 
unwrapping as an initial step. 

UNWRAPPING THE PHASE FUNCTION 

Phase unwrapping refers to the modulo 2n operation on phase angles. The phase 
returned by the FFT and any coded trigonometrical algorithm is in the range -JT to JT and 
is termed the principal phase <&p(0- Any principal phase angle may in fact be $p(0 + 2&r, 
where I is any signed integer, without changing the complex envelope function. The "true" 
phase is obtained by "unwrapping" the principal phase through addition or subtraction of 
multiples of 2ir; this phase is called the unwrapped phase, $u(0- The subscript u has been 
dropped but is implied in the subsequent discussion. 

The procedure adopted to determine the signed integer I is closely analogous to that 
adopted by Read and Sobey (1985) in unwrapping the phase spectrum of r\ij). From the 
time derivative of the natural log of Equation 11, it follows that 

f = lmag 1 M. 
A   dt 

(13) 

Given the slope of the phase function, numerical integration will provide an estimate of Ou 

at the new time. Integration proceeds by the trapezoidal rule, consistent with its adoption 
in the definition of the discrete Fourier and inverse Fourier transforms. A raw estimate of 
the principal phase $ is also available from the Hilbert transform/FFT procedure. In 
principle, the integer £ is 

£ = (*u - *P)/2TT (14) 

In practice, I will not be an integer as Equation 14 utilizes raw estimates of both *u and 
$p. To retain the same value of principal phase at each time step, I is adjusted to the 
nearest integer and the raw estimate of the unwrapped phase adjusted to 

$ = $p + 2&T (15) 

It remains to estimate the right hand side of Equation 13.   From the definition of the 
pre-envelope function, 

r A(0 expO'cy) = £;      2 F{w) e\p(iM) do) (16) 

Differentiating both sides with respect to time leads to 
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\  dA = exp(-iuy) 
A   dt A(t) 

if 2iwF(u>) exp(/utf) dw (17) 

The term in square brackets can be computed from the inverse FFT algorithm, noting that 
the kernel is zero for negative frequencies.   The slope d$/dt follows from Equation 13. 

The success of this algorithm is demonstrated by Figure 1.   The record is a smooth 
paper wave with a dominant frequency of 2?r/10.24 rad/s and envelope defined by 

mod A(t) = 1.5 + 1.0 sin Uxt + 0.75 sin Ity 

arg A{i) = 2-K sin QJ + 0.75TT sin ilj (18) 

where (l1 = 24n/T, fl2 = 40x/T, n3 = 10jr/r and T = 1024 j, the duration of the simulated 
record. The time step is 0.5 5. The paper wave record was established from Equations 1 
and 18; it exhibits substantial groupiness. The computed modulus and unwrapped phase 
records are included in Figure 1. The result is identical with the target envelope, Equation 
18. 

Paper Wave 
N = 2048; dt = 0.5 sec; fp = 0.098 Hz 

Eta & mod A (m) 

Time (mins) 

Fig. 1   Complex Envelope for Paper Wave 
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ALGORITHM EVALUATION 

From a purely computational viewpoint, the algorithm described above appeared to be 
successful. The mod A(t) trace was a consistently good visual representation of the 
envelope of the record. Visual confirmation of the arg A(t) trace does not seem possible, 
at least not without considerable experience in complex envelope analysis. One measure of 
success of the phase unwrapping procedure is the difference A£ between the real number 
estimate computed from the right hand side of Equation 14 and the nearest integer I 
adopted in Equation 15. The differential A£ was computed at each time step. The mean 
of the series is closely zero by definition but the standard deviation 

s = <A£2)*/2 (19) 

is a reasonable measure of the success of the phase unwrapping.  For Figure 1, s is zero. 

Botany Bay 09-Jul-81   11:02 hrs 
fp= 0.0836Hz   fo= 0.1097Hz   Variance=   0.97m**2   s=   0.020 

Eta & mod A (m) 

'f$j^ 

arg A (rad) 

Eta &. mad A (m) 

*f^(^ 

arg A (rad) 

Time (mlns) 

Fig. 2a  Complex Envelope for Botany Bay, 9 July 1981, 11:02 hrs. 

Figures 2 and 3 are analysis results from field records. The Figure 2 record was 
measured off Botany Bay on the east coast of Australia in 75 m of water. The record 
variance is 0.97 rrfi, the peak frequency is 0.0836 Hz, the computed dominant frequency is 
0.1097 Hz and the standard deviation 5 is 0.020. The Figure 3 record was measured off 
Wilson Bluff on the south coast of Australia, the record variance and peak frequency being 
1.61 m1 and 0.0550 Hz respectively. This record is predominantly long period Southern 
Ocean swell. The computed dominant frequency is 0.0719 Hz and the standard deviation 
is 0.025.   The computed dominant frequencies were typically about thirty percent greater 
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than the record peak frequencies, but there did not seem to be any apparent physical 
significance that could be attached to the dominant frequency.    The significance of the 
computed standard deviations might be established by comparison of typical values with 
expected values if A£ were a random variable, uniformly distributed in the interval - 0.5 
to + 0.5.   The theoretical mean and standard deviation of such a distribution would be 0.0 

ill 
and 12" '    = 0.289, respectively (Ang and Tang 1975).    The Figure 2 and 3 results are 
indeed small with respect to 0.289.   These are typical values and clearly demonstrate the 
relative success of the algorithm. 

Botany Bay 09-Jul-81   11:02 hrs 
fp= 0.0836Hz   fo= 0.1097Hz   Variance=   0.97m**2   s=   0.020 

Eta & mod A (m) 

0.00 

Eta & mod A (m) 

* r 

Fig. 2b  Expanded Complex Envelope for Botany Bay 

An occasional problem was identified in the phase unwrapping procedure where mod 
Aif) was close to zero. The d$/dt estimate from Equation 13 became very large, resulting 
in a sudden step change in the d$/dt trace and correspondingly in the * trace. This 
discontinuity could be accommodated by a L'Hospital's rule procedure, as adopted by Read 
and Sobey (1985) in unwrapping the phase spectrum of the original record, but near zero 
magnitude points were found to be much less of a probelm for the complex envelope 
function. A technique suggested by Brillinger (1962) proved to be satisfactory in the 
vicinity of near-zero A(t) points.   This is based on the trigonometrical identity 

^r- = cos $ 4~ (sin $) - sin * 4~ (cos $) 
dt dt dt 

(20) 

A forward difference approximation to the right hand side gave an alternate estimate of 
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d<b/dt that avoided any sudden steps in the d$/dt trace. This procedure was not suitable 
for general application however as the discrete approximation restricted the estimate of the 
phase derivative to the range - 1 to + 1. 

Wilson Bluff 25-April-80 05:29 hrs 
fp= 0.0550Hz   fo= 0.0719Hz   Variance=    1.61 m**2   s=   0.025 

Eta & mod A (m) 

Eta & mod A (m) 

'< i.' i/ %' v V «<  w ;; iv .< v '* v" v"" vw ^; i,*1 >> >/ v V* •/     *,V1' v  * 
V     'j       * H K l 

arg A (rad) 

Time (mins) 

Fig. 3   Complex Envelope for Wilson Bluff, 25 April 1980, 05:29 hrs. 

In practice, it was necessary to adopt a rational definition of a near-zero magnitude 
point.    If the envelope amplitudes followed the Rayleigh distribution (Longuet-Higgins 

1/2 1952), then a characteristic amplitude would be the mean amplitude (2a2)    , where a2 is 
the variance of the record.    The Equation 20 algorithm was used when mod A(t) was 
smaller than one-tenth of this value.  This tolerance level was not found to be critical. 

The value of the mod A(t) traces is clear from Figures 2 and 3, and particularly from 
Figure 2b which shows only the first four minutes of the Figure 2a results. The removal 
of the dominant frequency focusses attention quite sharply on the envelope modulations is 
a very natural manner. Wave grouping is clearly identified, conveniently in a manner that 
(unlike low pass filtering of r)2(t)) does not remove potentially valuable information from 
the record. With only casual experience, the identification of wave grouping in the phase 
trace alone does not seem possible but some assistance may be forthcoming from the cross- 
correlation and the cross-spectra between the modulus and argument traces. It is apparent 
from Figure 2b in particular that there remains potentially significant detail imbedded in 
the complex envelope amplitude and phase traces. 
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CORRELATION AND CROSS-CORRELATION 

In the time or lag domain, the appropriate statistical summary is the cross-correlogram, 
plotting the normalized cross-correlation 

PR*M = CM(r)/ [CRHCOXWO)] 
1/2 

(21) 

against the time lag r. The cross-correlation CR4(r) is the expectation E[(R(t)-K)$(t+T)], 
where Ris the average modulus of the envelope. The C^T) and C$Q(T) are similarly 
defined. In practice, the correlograms were computed from the inverse Fourier transform 
of the variance spectra and cross-spectrum of R and $, to take advantage of the FFT 
algorithm. It is reasonably common in complex demodulation (Hasan 1983) to consider 
in R(t) rather than R(t), as the probability distribution of in R(l) is more nearly Gaussian. 
This practice was considered but not adopted as the range of R in the present problem is 
relatively small. 

Figure 4 shows the correlograms corresponding to the Botany Bay record in Figure 2. 
The normalized form of the cross-correlation CM is presented together with the 
normalized Cj^ and C$4 autocorrelations; CR$ is not an odd or even function and there 
are different traces for positive and negative lags. The correlograms are truncated at 
20/fp, a typical record length being 100// . 

Botany Bay 09-Jul-81   11:02 hrs 
Short dashed lines are 95% confidence limits 

Normalized Autocorrelation 

Normalized Cross—Correlation 

0.50 r- 

-0.25 

-0.50 

' +ve lags 

" —ve logs 

10 
tau*fp 

Fig. 4  Correlograms for Botany Bay, 9 July 1981, 11:02 hrs. 



WAVE GROUPS IDENTIFICATION 761 

The initial part of the CRR trace is typical of random noise. The tail however does 
not decay but evolves into an irregular long period oscillation with a period of order 4//p. 
Referring back to the envelope trace in Figure 2, this is the anticipated result, the 
correlogram oscillation corresponding roughly to the envelope modulations. Similar, but 
longer period, oscillations are observed in the C49 traces, indicating that the envelope 
modulations are perhaps a feature of the phase trace as well as the amplitude trace. 
Periodicity of order 4//p remains the dominant feature of the cross-correlogram CR$, 
implying some residual coupling between the envelope amplitude and phase. This would 
appear to impose some qualification on the Gaussian random wave model, which explicitly 
assumes that the phase trace is completely random. The magnitude and residual periodicity 
of the cross-correlations imply that the record involves a little order against a lot of 
background disorder. 

The detailed interpretation of correlograms however must acknowledge a number of 
uncertainties.    It is well known (Kendall & Stuart  1966, Jenkins & Watts  1968) that 
correlograms for short series can be unreliable and may not decay as rapidly as expected; 
as; a rule of thumb, only the first twenty percent might be given any credence.    Wave 
records are moderately long series however, typically 2048 points over seventeen minutes; 
the maximum lag presented in Figure 4 is 20//p, corresponding typically to less than 
twenty percent of the record length.    These potential uncertainties may be addressed in 
two ways, the first being the estimation of confidence limits on the correlogram tail. 
Kendall and Stuart (1965) show that the variance of a normalized auto-correlation estimate 
is   dependent  on  all  autocorrelations   in  the  series,   even  for  large  samples  with  the 
simplifying assumption of normality.     However for a random series where all parent 
autocorrelations are zero, the expectation of the mean approaches - l/N and the variance 

1/2 l/N.   The 95 percent confidence limits are accordingly - l/N ± 2/(N)    .   The width of 
this confidence band decreases with the length of the series, but is already moderately 
small at ± 0.044 for typical 2048 point records.    These 95 percent confidence limits are 
included as the short-dashed lines on Figure 4.   Note that rather more than five percent of 
the autocorrelogram and cross-correlogram tails falls outside this band. 

A second approach to these potential uncertainties for moderately small lags is to 
compute the correlograms from a longer sample, significantly in excess of the typical 
100//p. The nominal twenty minute record has become a field measurement standard and 
longer records are not commonly available. Long records also introduce another problem, 
in that the record may no longer be statistically stationary. Sea states typically develope at 
time scales of order hours (Sobey 1986). A record of twenty minutes could reasonably be 
expected to be stationary, a record of one hour may or may not be stationary according to 
circumstance, but a record of several hours is unlikely to be stationary. An attempt to 
solve one problem unfortunately introduces another. Non-stationarity appears as very low 
frequency trend in the Fourier transform. There is a sharp spectral spike at near-zero 
frequency, whose magnitude increased substantially with longer records and accordingly 
finer frequency resolution. This was a particular problem in the phase trace. Jenkins and 
Watts (1967) recommend removal of such very long period trend prior to analysis by high- 
pass filtering of the record; this approach was adopted with a cutoff frequency of 0.05 / . 
The phase trace was first low-pass filtered by a moving average filter of width equivalent 
to a 0.05 /p cutoff. This filtered record was then subtracted from the original phase trace 
to yield the detrended phase trace. Without detrending, the very low frequency trend 
completely dominated the Fourier transform and just as completely negated any advantage 
from a longer record. Detrending was adopted with considerable reservation however, as a 
developing sea state will likely be accompanied by physical developments in the wave 
grouping structure which will also negate any advantage from a longer record. An 
excessively long record (say several hours) is clearly inappropriate. A one hour record 
might be a reasonable compromise, provided the record is reasonably stationary and due 
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attention is given to the analysis uncertainties. 

The record presented in Figure 2 and again in Figure 4 is the central 2048 points 
(nominal twenty minutes) of a 8000 point (nominal one hour) record. The variance of this 
extended record was computed in 1000 point blocks, being 1.40, 0.98, 0.77, 0.99, 0.75, 
0.94, 1.06 and 1.18 m1 for the Botany Bay record. This variation is typical of visually- 
stationary wave records. Figure 5 is a repetition of the correlogram analyses for the 8000 
point record. Record length is of order 400//p and lags up to 20//p now represent only 
five percent of the record length. The confidence band is also somewhat narrower, 
reflecting the larger sample size. The general trend of the correlogram however remains 
largely unchanged. 

Botany Bay 09-Jul-81   11:02 hrs 
Short dashed lines are 95% confidence limits 

. Normalized Autocorrelation 

tau*fp 

Fig. 5   Correlograms for Botany Bay, 8000 point record. 

The Figure 4 correlogram is quite a typical result. It provides a useful perspective on 
the nature of wave groups in surface gravity waves. A large part of a typical wave record 
can reasonably be described as random; of order ninety percent of the information can be 
so described. The residual ten percent or so would appear to be nonrandom, involving 
long period modulations of the complex wave envelope. The implied low-level correlation 
between the envelope amplitude and envelope phase traces appears to be an intrinsic 
property of wave groups. 
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SPECTRA AND COHERENCE 

In the frequency domain, the statistical summary is the cross spectrum 

£#$("0 = ^        CR$(T) exp(-wr) du (22) 
J -OO 

^i?$(w) is a complex function with a real part (the cospectrum) and an imaginary part (the 
quadspectrum).   A useful real function is the coherence 

7R$(u) = mod £#$(w) / [£/{fl(w)E$$(w)]l/> (23) 

or the squared coherence, the square of Equation 22. The squared coherence approaches 
unity when the two traces are strongly correlated and it is zero when the traces are 
uncorrelated. High squared coherence levels suggest some relationship between the phase 
and amplitude traces, a relationship that is assumed by the Gaussian random wave model 
to be very small. 

The variance spectra £RR.(W) and £$$(w) and the cross-spectrum were estimated 
directly from the Fourier transforms of the envelope amplitude and phase traces, taking 
advantage of the FFT algorithm. Raw spectral estimates resulting from the FFT algorithm 
have only two degrees of freedom and the raw estimate of squared coherence is identically 
one for all frequencies (Bloomfield 1976). Statistically reliable spectral estimates require a 
significant increase in the degrees of freedom, achieved by frequency domain smoothing of 
ERR(w), £$$(w) and ER$(to) prior to estimation of the squared coherence. Frequency 
domain smoothing (specifically here a moving average filter of half-width L points) 
increases the degrees of freedom from 2 for the raw FFT estimates to 4L + 2. The widths 
of 95 percent confidence bands on variance spectral estimates and on squared coherence 
estimates are accordingly reduced (Jenkins and Watts 1968). A filter half-width L of the 
nearest integer to l/(5f At) proved to be a suitable compromise between statistical 
confidence and resolution of detail. 

The complex demodulation procedure introduces an immediate problem of frequency 
resolution in spectral analysis of the complex envelope. A typical 1024 s wave record 
imposes a frequency resolution of 0.000977 Hz, more than adequate to accommodate peak 
frequencies of order 0.1 Hz. Complex demodulation however removes these frequencies 
and shifts the spectral peak to frequencies of order 0.01 Hz, where the frequency 
resolution is distinctly marginal. Frequency resolution is enhanced by a longer record, 
specifically 8000 points where the frequency resolution is 0.000150 Hz. While this 
resolution remains marginal, longer record lengths will again introduce problems of non- 
stationarity. 

The frequency domain description for the Botany Bay record is shown in Figure 6, 
which includes four spectra. Part (a) is the variance spectrum for R - R, the solid line 
being the raw estimate and the dash-dot line the smoothed spectral estimate, 95 percent 
confidence bars being shown at selected frequencies for the smoothed spectral estimates. 
Part (b) is an analogous presentation of the variance spectrum for the envelope phase trace. 
Part (c) is the smoothed squared coherence estimate, the dotted line being the 95 percent 
confidence limit on zero coherence between the amplitude and phase traces. Part (d) is arg 
•ERS^X the smoothed phase of the cross spectrum between R and $. Variance levels at 
frequencies above the spectral peak are very small and these presentations are terminated at 
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Botany Bay 09-Ju!-81  11:02 hrs 

(a) Variance Spectrum of mod A(t) [m*m/s] 

" Raw 

" Smoothed 

yuj<iUAii>uAu 
0.00        0.20        0.4-0        0.60 0.80 1.00 

f/fp 

(b) Variance Spectrum of arg A(t) [/s] 

3000 
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1500 - 
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0.00        0.20        0.40        0.60        0.80 1.00 
f/fp 

(c) Squared Coherency 

0.25 

1 

V 
1 Mmx, 

0.00        0.20        0.40        0.60        0.80 1.00 
f/fp 

(d) Phase of Cross—Spectrum [/pi] 

A    A; 

J L 
0.00        0.20        0.40        0.60        0.80 1.00 

f/fp 

Fig. 6   Spectra for Botany Bay, 8000 point record. 

The fjm spectrum for Botany Bay is the result that is anticipated from the 
correlograms in Figure 4 and 5; it is dominated by short frequencies about an order of 
magnitude less than the peak frequency. Short frequencies are also clearly dominant in the 
phase trace in Figure 2 and this is confirmed in Figure 6. The squared coherence 
spectrum shows moderate coherence in excess of the 95 percent confidence limit on zero 
coherence at frequencies of order 0.2 /p to and also 0.8 /p. The Gaussian random wave 
model would suggest negligible coherence throughout. Coherence levels are small but not 
entirely negligible. Analysis of the cross-phase spectrum was not pursued, as marginal 
frequency resolution and low coherence levels indicated that results would most likely be 
inconclusive. The higher frequency peak might perhaps be the result of non-linear 
interactions near the spectral peak. Moderate coherence levels around 0.2 /p seemed to be 
a reasonably typical result, at least for waves off Botany Bay. 

CONCLUSIONS 

The complex envelope function is a very useful analysis technique for wave records 
where the identification of wave grouping is a relevant interest. The removal of the 
dominant frequency concentrates attention directly on the envelope modulations without 
removing potentially useful information from the record. Wave groups are clearly 
identified against a predominantly random background. An algorithm has been presented 
for extraction of the complex envelope function, identification of the dominant frequency 
and unwrapping of the phase trace. 
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Cross-correlogram and cross-spectral analyses of the simultaneous envelope amplitude 
and unwrapped phase traces has associated wave grouping with low level phase locking 
between the amplitude and phase traces. The ordered structure comprises about ten 
percent of the information contained in a wave record. The balance of the record can 
reasonably be described as random, as assumed by the Gaussian random wave model. This 
dominant random component is clearly responsible for the relative success of the Gaussian 
random wave model. 
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