
CHAPTER 48 

LOCAL APPROXIMATIONS   :   A HEW WAY OF DEALING WITH IRREGULAR WAVES 

by 

Peter Nielsen,  Ph.D. 

ABSTRACT 

The concept of local approximations via locally defined frequencies 
is introduced as a tool for dealing with irregular, non linear waves. 
Practical testing has been performed on the problem of estimating 
surface elevations from measured bottom pressures. In these tests the 
new method even in its simplest form proves more accurate than the 
linear spectral method. With respect to computational effort the new 
method requires orders of magnitude less than spectral methods, or 
wave by wave  analysis  of   similar  accuracy. 

INTRQDDCTION 

Dealing with irregular waves is one of the major tasks of coastal 
engineers,   and doing  it   in an  appropriate way  is  often a big  problem. 

Traditionally, two major approaches have been applied namely spectral 
analysis and wave-by-wave analysis. Spectral analysis relies on 
essentially "linear thinking" and has therefore got problems with non 
linear waves. Wave by wave analysis can be non linear, but there are 
problems  of  ambiguity with respect  to defining  the  individual  waves. 

In order to obtain reasonable accuracy for wave-by-wave analysis of 
non linear waves one must apply a suitable, high order wave theory. 
But the complexity of such theories makes it desirable for the 
practicing engineer to find a different method by which reasonable 
results can be obtained with a simple wave theory e.g. linear wave 
theory. 

This problem was solved by Daemrich et al (1980) who realised that 
the long flat trough of a non linear wave might be represented by a 
correspondingly long flat sine wave, and similarly, the short, 
strongly curved crest section could be represented by a short, steep 
sine wave. We may call their method "half-wave-by-half-wave- 
analysis". 

Tn the following we shall take their idea a bit further and not just 
apply different frequencies to trough and crest, but apply a locally 
defined  frequency  to each point   in  the wave   record. 
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Once we have a frequency to work with, there are many wave theories 
to chose from. It seems however that something simple like linear 
wave theory with a simple stretching term inbuilt does a good job in 
most cases. Using the concept of the locally defined frequency, it is 
in fact possible to devise very simple transfer functions, which are 
essentially only non linear filters. These semi empirical transfer 
functions can have very good accuracy and hence be very useful for 
handling data by hand or by micro processor. 

As an example the new idea is applied to the problem of estimating 
water surface elevations from measured bottom pressures under steep 
irregular waves. The results are encouraging. 

THE CONCEPT OF LOCAL FREQUEHCY. 

A basic assumption to most existing wave theories is that the water 
motion is periodic and can be described by a suitable combination of 
the simple harmonic functions. 

(1! 

where An and Br are constants and U? = lIT/T:. Such combinations can 
(at least assymptotically) describe the shape of natural waves but 
in the following we shall take a different approach. Vie shall deal 
with slowly curving parts of the wave as if they were parts of long 
sine waves and with strongly curved parts as if they were part of 
short sine waves. A step in this direction was taken by Daemrich et 
al (198Q ) who applied "half wave by half wave analysis" to irregular 
waves and thus treated the water motion between two consecutive 
surface zero crossings as part of a sine wave with a period of twice 
the   interval  between the  zero crossings. 

In the following we shall go a step further and apply a locally 
defined frequency to each individual point in the time series. The 
local frequency f is defined as that of the sine curve which matches 
the wave shape locally. Figure 1 shows measured surface elevations 
and dynamic bottom pressure under a steep wave and the corresponding 
variation of the locally defined frequency. We see that the local 
frequency is well behaved in the crest and trough areas but becomes 
erratic near the zero crossings. Therefore the concept of local 
frequency is only really useful in relation to problems where the 
main interest is on the extreme elevations and/or velocities, but 
fortunately that is most often the case. Among the meaningful local 
frequencies the extremes are produced by the surface elevation. In 
the flat trough, f (* , t) falls to just under 0.5/T, and at the crest 
it reaches 1.7/T. For f(p,t) the range is from 0.6/T to 1.2/T. It is 
interesting to note that even for the very steep wave in Figure 1 
which in the spectral sense contains many high harmonics, the upper 
limit of f(»,t) in the crest area is less than 2/T i.e. lower than 
the  frequency of  the  second harmonic. 
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Figure 1 : Top : Measured surface elevations k and dynamic bottom 
pressures p for a steep 1.8 second wave in 0.4 metres of water. 
Bottom   :   local  frequencies  derived  from p  and Ij  . The local 
frequencies f(p,t) and f(£,t) are well behaved in the crest and 
trough areas but tend to be erratic near the zero crossings. The well 
behaved frequencies are typically between half and two times the 
crest to  crest  frequency 1/T. 
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Figure 2   :   Histogram  of  weighted   local   frequencies   and     conventional 
energy  spectrum   for   both p   and » from  the   same   irregular  wave  record. 
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A histogram of the local frequencies from a wave record weighted with 
the square of the local amplitude may serve like a spectrum for 
describing the distribution of wave energy. The meaning of the 
average frequency is rather obvious but the physical implications of 
other statistics like the coefficient of variation need further 
investigation. An example of the histogram of weighted local 
frequencies is shown in Figure 2 together with the conventional 
spectrum of the same record. We see that the histogram has a much 
simpler shape. Possible areas of application for the histogram are 
break water design where increased attention has been paid to wave 
shapes recently, see e.g. Bruun et al (1985), and remote sensing of 
wave climates where the distribution of surface slopes and curvatures 
influence   the surface   reflectivity. 

CALCULATING THE LOCAL FREQUENCY 

A frequency f or radian frequency o> = 2W can be affixed to any point 
xm = x(tm) in a time series by fitting a cosine curve locally 
around the point. The simplest fitting proceedure is to pick the 
uniquely defined  curve 

xc«;    *    A o>$(uit-f) (2) 

which passes through the point and its neighbour on either side, 
while more robust estimates may be obtained by least squares fitting 
to more  than  three points. 

The exact value of U> for a 3-point fit can be found in the following 
way.   Let 

**.   -   A a? e (3) 

and hence 

*M+I  3    4c?j(e±coA) (4) 

where ^  is    the    time    increment   between   the    three   points.    Then    it 
follows    from    trigonometric     identities     that  ct?   can    be    found    from 
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i v(^H W   a   4- CM  -*M*i_L*M=i_l (5) 

This estimate is always defined if xn f  0 but the imaginary values 
which result if 

zK\ * !**•,• x*.,/ (6) 

are not immediately interpret able in physical terms. Hote that the 
time interval A is not necessarily equal to the sampling interval. 
Often it is more appropriate to chooseAa few times larger than the 
sampling interval. 

A slightly simpler estimate, which avoids evaluation of the inverse 
cosine function in (5) can be obtained via the identity 

X*  =  -COZX» (7) 

which holds for all functions of the form (2). The second derivative 
x" is estimated by 

X" ""*     *M-/ " 2 X<H "+ XA\+I (8) 

Then using  (7 )  we  have 

Again A can  be  a multiple  of  the  sampling   interval.   The  estimate 

<JOZ rs        -    "**-'   -2XAA-*XM + 1 (IO) 
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is  a biased   estimate of u>2.   it  under  estimates u> in accordance  with 

A* 
CO C^[1-*MM   +°(A»t      ai) 

Hence  an  improved  estimate  can  be obtained  from 

a*    -    £*[l*M**r] (12) 

The  latter  formula   is  within one  percent  of  error  for A < T/6 
or   coA^l.O. 

A PRACTICAL APPLICATION 

Pressure transducers have several advantages over other field 
instruments used for wave recordings. They are the most reliable and 
the easiest to install. It is therefore of interest for practicing 
engineers to be able to derive other wave properties, such as surface 
elevations and velocities from measured bottom pressures. We shall 
now see that local approximations provide a very efficient tool for 
dealing with this problem. 

For a sine wave, the surface elevation »(t) is related to the dynamic 
bottom pressure £>(t) by ^ 

f(t)     =  2&- <s&k kb (") 

where £ is the fluid density, g the acceleration of gravity and D the 
water depth. The wave number k is related to the radian frequency 
through the dispersion relation 

hD Amk kD  = 
% 

(i4: 

The traditional way of deriving h(t) from p(t) for irregular waves 
has been by using spectral analysis. The method involves three steps: 
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1. Find  the discrete pressure specturm Spp(Ct/i) 

2. Transform each  spectral   estimate  in accordance  with  (13)   : 

3. Create    the l£( t)     time     series     from    SU (<w1)    by    the    discrete, 
inverse Fourier  transform. '* 

This traditional method is neither fast nor accurate but fortunately 
we can oevi.joi.' .Oie» native methods involving the use of local 
approximations which  are both  faster  and  more accurate. 

The most straight forward approach is to apply the linear-wave 
formula (13) using a local wave number determined from the local 
frequency through (14). Such an approach does however systematicly 
under estimate h(t) because linear wave theory, from which (13) is 
taken, is not geared to handle finite surface elevations. We are free 
tc use any wave theory we like as soon as we have a frequency to work 
with, but for this purpose it is adequate just to use a modified 
version of Equation  (13) 

t(t) =      ^    ^     ^f^ U5) 

where k is the local wave number determined from the local frequency 
through (14). Replacing the depth D by D + P/VQ in the argument of the 
cosh-function accounts in a way for the fact that the instantaneous 
water surface can be a finite distance away from the mean water 
level. Equation (15) based on local frequencies is superior to the 
traditional spectral method with respect to both speed and accuracy. 
An example is shown in Figure 3 where estimates from both methods are 
compared to the actual, measured surface elevations. The local 
approximations method recovers the crest height a little better and 
the shape of the troughs is more accurately represented as well. In 
terms of the normalised deviation dev (x, y )s /jix-yl^/Jy2' based on 
the full 123 second record, the local approximation estimates gave a 
deviation of 0.215 while the spectral estimates gave a deviation of 
0.242. The fine details of the results depend on the measures applied 
with each method to overcome noise problems. This aspect will be 
treated   in  detail  later. 
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Figure 3 : Estimates of surface elevations from bottom pressures 
compared to measured surface elevations. The water depth D was 0.38 
net res. We see that equation (15) with local frequencies is slightly 
better at estirae t ring crest heights and much better at estimating 
depth and shape of the troughs than the spectral method. No smoothing 
has been applied anywhere in the processing. The cut off frequency of 
1.45  Ez   appJjed   in  the  spectral  method  was  deemed optimal. 
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SEMI EMPIRICAL TRANSFER FUNCTIONS 

Semi empirical transfer functions are useful in many practical cases. 
Also with respect to these can the concept of local frequencies be 
helpful. Consider again the problem of estimating surface elevations 
£(t) from dynamic bottom pressures p(t) in irregular waves. We want a 
very simple algorithm for processing data by hand or by micro 
processor. 

From a heuristic physical  consideration we may argue  that the 
strength with which a water surface signal is transferred to the 
bottom depends on the ratio between the radian frequency UJ of the 
signal and the natural frequency of the water column/g/b' i.e. 

% 
F(Y*) (16) 

and here we may replace D by D + p/pg in order to account for finite 
changes in depth hence we have 

(i7: 

For   this   purpose   we   will   use   the   simplest   possible   estimate   of   the 
local   frequency,   namely 

CJ2- - -    %c\ "2%*,* %1-W, (18) 
? A* 

and hence we have 

(19) 

To determine the empirical function F we now plot the left hand side 
of (19} versus the argument of F for a few accurately known data 
points, for example taken from Dean's stream function tables (Dean, 
1974). That has been done in Figure 4 and we see that F can be 
adequately represented by a simple exponential, F(x) = exp(2x/3). 
Hence      the     full      expression      for      our      transfer      function      is 
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l*V 
-    3a. 

S1 
&Cf[ (2)+| (2o; 

a    simple    one    line    expression    which    compares    favourably    with the 
spectral    method    with    respect    to    accuracy,     see   Figure    5. The 
normalised    deviation    for    the    eq(20 )-est.Jiriates    was    0.208   while the 
coi respondIno  value  for   the spectral   estimates  was  0.242. 
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Figure 4 : Data from Dean's stream function tables from which the 
empirical function in (19) can be determined. We see that equation 
(20)     provides     an     easy     and     reliable     fit     to     the     data. 
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Figure   5    : .Surface    evaluation   estimates   by   equation 
(20) and the spectral method compared to actual, measured surface 
elevations. Equation (20) matches both crests and troughs better than 
the spectral method and of course it requires much less computational 
effort. 
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RESOLUTION VERSUS NOISE 

In dealing with real data, there is always a problem of balancing 
resolution against noise, especially when high frequency signals have 
to be amplified strongly as is the case when deriving surface 
elevations  from  bottom  pressures. 

The resolution is determined by the time increment A • A small A gives 
high resolution while a large A overlooks high frequency variations. 
There is no general rule for the choice of A since the optimum must 
obviously depend on the relative strength and the difference in 
frequency between signal and noise. However, the following value will 
generally provide  a  reasonable  first guess. 

(21) 

The fact that the w-:animjful, locally defined frequencies generally 
occupy a narrower band than all the harmonics needed for a spectral 
description (see Figure Z) means that it is generally possible to 
apply a lower cut off frequency when using a local approximations 
method  than with a  spectre!  method. 

While the above is true, it must be remembered that there are special 
problems with defining the local frequency near zero crossings. 
Unreasonably large or imaginary values of to may occur. A reasonable 
upper limit for acceptable local frequencies is W = 1.5 g/D, whnch 
corresp-onds  to cosh   Ich  =  2.6 

When imaginary or unacceptably large values of CO occur it is 
generally adequate to assign the value zero to c&, at least for those 
practical   problems  that  have  been dealt  with  so far. 

Because the details of the water motion close to zero crossings is 
generally unimportant, the problem of the local frequency being ill 
conditioned   in  this area   is  of  little  practical  consequence. 

DISCUSSION 

The use of local approximations via locally defined frequencies is 
recommended for practical analysis of irregular waves. Firstly 
because it requires far Jess computational effort, than any other 
available method, e.g. wave by wave analysis, Fenton's local 
polinomial method (Fenton 1986) or the previously most piopular 
spectral method. Secondly because it seems to be superior to the 
spectral  method  with  respect   to accuracy. 

The strength of local frequency methods such as (15) or (20) relative 
to the linear spectral method lies first of all in the fact that it 
is very easy to apply stretching simply by replacing the depth D with 

D    +    p/p g.    Secondly,     in    the    fact    that    the   spectral    method    ovoi 
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amplifies both signal and noise at high frequencies. This happens 
because it wrongly assumes that "all waves are free waves" in order 
to be able to calculate k(u>) from the disperson relation (14). 
Talking about the dispersion relation it must be admitted that 
applying it to a locally defined frequency probably makes very 2 j 11 ] v 
physical! sense. To this one can only reply that the justification for 
using equation (15) with its reliance on the dispersion relation (14) 
lies in its proven efficiency. 

Semi empirical transfer functions like (20) do not rely on any wave 
tl'ieoiy but only on a bit of physical intuition and with this somewhat 
mo; e "unassuming" nature, and their good performance they may turn 
out to be the most useful area of application for the concept of 
locally defined frequencies. The conclusions stated in this paper are 
essentially based on experience with a single practical problem, 
namely that of deriving water surface elevations from dynamic 
pressures measured at the bottom. This problem is however a very 
tough one so it is highly likely that local approximations using 
locally defined frequencies will prove a useful tool for solving many 
problems involving irregular, non linear waves. 
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