CHAPTER 48

LOCAL APPROXIMATIONS : A NEW WAY OF DEALING WITH IRREGULAR WAVES

by
*
Peter Nielsen, Ph.D.
ABSTRACT

The concept of local approximations via locally defined frequencies
is introduced as a tool for dealing with irregular, non linear waves.
Practical testing has been performed on the problem of estimating
surface elevations from measured bottom pressures. In these tests the
new method even in its simplest form proves more accurate -than the
linear spectral method. With respect to computational effort the new
method requires orders of magnitude less than spectral methods, or
wave by wave analysis of similar accuracy.

INTRODUCTION

Dealing with irregular waves is one of the major tasks of coastal
engineers, and doing it in an appropriate way is often a big problem.

Traditionally, two major approaches have been applied namely spectral
analysis and wave-by-wave analysis., Spectral analysis relies on
essentially "linear thinking" and has therefore got problems with non
linear waves. Wave by wave analysis can be non linear, but there are
problems of ambiguity with respect to defining the individual waves.

In order to obtain reasonable accuracy for wave~by-wave analysis of
non linear waves one must apply a suitable, high order wave theory.
But the complexity of such theories makes it desirable for the
practicing engineer to find a different method by which reasonable
results can be obtained with a simple wave theory e.g. linear wave
theory.

This problem was solved by Daemrich et al (1980) who realised that
the long flat trough of a non linear wave might be represented by a
correspondingly long flat sine wave, and similarly, the short,
strongly curved crest section could be represented by a short, steep
sine wave, We may call their method "half-wave-by-half-wave-
analysis®,

*n the following we shall take their idea a bit further and not just

apply different frequencies to trough and crest, but apply a locally
defined frequency to each point in the wave record.
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Once we have a freguency to work with, there are many wave theories
to chose from. It seems however that sorething simple like linear
wave theory with a simple stretching term inbuilt does a good job in
most cases. Using the concept of the locally defined freguency, it is
in fact possible to devise very simple transfer functions, which are
essentially only non linear filters., These semi empirical transfer
functions can have very good accuracy and hence be very useful for
handling data by hand or by micro processor.

As an example the new idea is applied to the problem of estimating
water surface elevations from measured bottom pressures under steep

irregular waves. The results are encouraging.

THE CONCEPT OF LOCAL FREQUENCY

A basic assumption to most existing wave theories is that the water
motion is periodic and can be described by a suitable combination of
the gimple barmonic functions.,

Z An 0p M0t +BM/.\.&« mwt e

where A, and By are constants and &) = 2%/7. Such combinations can
(at least assymptotically) describe the shape of natural waves but
in the following we shall take a different approach. We shall deal
with slowly curving parts of the wave as if they were parts of long
svine waves and with strongly curved parts as if they were part of
short sine waves. A step in this direction was taken by Daemrich et
al (1980 ) who applied "half wave by half wave analysis"™ to irregular
waves and thus treated the water motion between two consecutive
surface zerc crossings as part of a sine wave with a period of twice
the interval between the zero crossings.

In the following we shall go a step further and apply a locally
defined freguency to each individual point in the time series. The
local freguency £ is defined as that of the sine curve which matches
the wave shape locally. Figure 1 shows measured surface elevations
and dynamic bottom pressure under a steep wave and the corresponding
variation of the locally defined freguency. We see that the local
frequency is well behaved in the crest and trough areas but becomes
erratic near the zero crossings, Therefore the concept of local
frequency is only really useful in relation to problems where the
main interest 1is on the extreme elevations and/or velocities, but
fortunately that is most often the case. Among the meaningful local
freguencies the extremes are produced by the surface elevation, In

the flat trough, f(p,t) falls to just under 0.5/T, and at the crest
it reaches 1.7/T. For £f(p,t) the range is from 0.6/T to 1.2/T. It is

interesting to note that even for the very steep wave in Figure 1
which in the gpectral sense contains many high harmonics, the upper
limit of f(,,t) in the crest area is less than 2/T i.e. lower than
the frequency of the second harmonic.
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Figure 1 : Top : Measured surface elevations AL and dynamic bottom
pressures f)' for a steep 1.8 second wave in 0.4 metres of water,
Bottom : local frequencies derived from f)' and i . The local
frequencies £(¥,t) and f(q,t) are well behaved in the crest and
trough areas but tend to be erratic near the zero crossings. The well
behaved frequencies are typically between half and two times the
crest to crest freguency 1/7.
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Figure 2 : Histogram of weighted local frequencies and conventional
energy spectrum for both [ andz from the same irregular wave record.
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A histogram of the local frequencies from a wave record weighted with
the square of the local amplitude may serve like a spectrum for
describing the distribution of wave energy. The mecaning of the
average frequency 1is rather obvious hut the physical implications of
other statistics 1like the coefficient of variation need further
investigation. An example of the histogram of weighted local
freguencies is shown in Figure 2 together with the conventional
spectrum of the same record. We see that the histogram has a much
simpler shepe. Possible areas of application for the histogram are
break water design where increased attention has been paid to wave
shapes recently, see e.g. Bruun et al (1985), and remote sensing of
wave climates where the distribution of surface slopes and curvatures
influence the surface reflectivity.

CALCULATING THE LOCAL FREQUENCY

A frequency f or radian frequency «w = 2WF can be affixed to any point
Xn = X(tp) in a time series by fitting a cosine curve locally
around the point. The simplest fitting proceedure is to pick the
uniquely defined curve

x@) = A (_o;s(wf‘}’) (2)

which pagses through the point and its neighbour on either side,
while more robust estimates may be obtained by least squares fitting
to more than three points.

The exact value of ¢y for a 3-point fit can be found in the following
way. Let

X = A dos b (3)

and hence

Xpay = A con (8 % w4) (4)

where #§ is the time increment between the three points. Then it
follows from trigonometric identities that ¢ can be found £from
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This estimate is always defined if x; # 0 but the imaginary values
which result if

N
~—

2/’%‘ < lxﬁm*xm-«/ (

are not immediately interpretable in physical terms. Note that the
time intervaldis not necessarily equal to the sampling interval.
Often it is more appropriate to choosels few times larger than the
sampling interval.

A glightly simpler estimate, which avoids evaluation of the inverse
cosine function in (85) can be obtained via the identity

2
' = mwx (7)

which holds for all functions of the form (2). The second derivative
X" is estimated by

x' = Xau "'Z):M + Xmeg (8)

A

Then using (7) we have

wz' = ..}_" ~ x“"-{x&*&ﬁil- (9)
X A XM

AgainA can be a multiple of the sampling interval. The estimate

AL = Xagot ~2X? Xy (10)

IN N
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is a biased estimate of w2, It under estimates w in accordance with

6
& 1 - hwa?] + o8 on

U

Hence an improved estimate can be obtained from

2

@, &1+ 7‘5(64)2] (12)

The latter formula is within one percent of error for A <T/6
or wAS1.0.

A PRACTICAL APPLICATION

Pressure transducers have several advantages over other field
instruments used for wave recordings. They are the most reliable and
the easiest to install., It is therefore of interest for practicing
englineers to be able to derive other wave properties, such as surface
elevations and velocities from measured bottam pressures. We shall
now see that local approximations provide a very efficient tool for
dealing with this problem,

For a sine wave, the surface elevationz(t) is related to the dynamic
bottom pressure 'f)'(t) by

P& = %%l cosh kD 0

where ¢ is the fluid density, g the acceleration of gravity and D the
water depth. The wave number k is related to the radian frequency
through the dispersion relation

2

kD /(GMI'L kD = -%)—:D (14)

The traditional way of deriving p(t) from I)'(t) for irregular waves
has been by using spectral analysis., The method involves three steps:
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1. Find the discrete pressure specturm Sppaui)

2. Transform each spectral estimste in accordance with (13) :
Sta () = Sﬂ, (@) doph (hzl)/gj

3. Create the Q(t) time series from %7 @wj) by the discrete,
inverse Fourier transform.

This traditional method is neither fast nor accurate but fortunately
we can  Cevelop oliterpative methods involving the use of local
approximations which are both faster and more accurate.

The most straight forward approach 1is to apply the linear-wave
formula (13} using & Jcocal wave number determined from the lccal
fregquency through (14). Such an approach does however systematicly
under estimate p(t) because linear wave theory, from which (13) is
taken, is not geared f£o handle finite surface elevations., We are free
tc vse any wave theory we like as soon as we have a frequency to work
with, but for this purpose it 1is adequate just to use a modified

version of Eqguation (13)

~r

pe) = —%}- Coph k(D-t-?-gﬂ) (15)

where k is the local wave number determined from the local frequency
through (14). Replacing the depth D by D + g/ in the argument of the
cosh-function accountg in a way for the fact that the instantaneocus
water surface can be & finite distance away from the mean water
level, Equation (15) based on local fregquencies is superior to the
traditional spectral method with respect to both speed and accuracy.
An example is shown in Figure 3 where estimates from both methods are
compared to the actual, measured surface elevations. The local
approximations method recovers the crest height a little better and
the shape of the troughs is more accurately represented as well., In
terms of the normalised deviation dev (x,y):“thy)zAZyz based on
the full 123 second record, the local approximation estimates gave a
deviation of 0.215 while the spectral estimates gave a deviation of
0.242. The fine details of the results depend on the measures applied
with each method to overcome noise problems., This aspect will be
treated in detail later.
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Figure 3 : Estimates of surface elevations from bottom pressures
compared Lo measured surface elevations. The water depith D was 0,38
retres. We see that equation (15} with local frequencies is slightly
better at estimeting crest heights and wuch better at estimating
depth and shape of the troughs than the spectral method. No smoothing
has been applied anywhere in the processing, The cut of f frequency of
1.45 FEz applied in the spectral method was deemed optimal,
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SEMI EMPIRICAL TRANSFER FUNCTIONS

Semi empirical transfer functions are useful in many practical cases.
Alsc with respect to these can the concept of local frequencies be
helpful. Consider again the problem of estimating surface elevations
np(t) from dynamic bottom pressures P(t) in irregular waves, We want a
very simple algoritbm for processing data by hand or hy micro
processor.

From a heuristic physical consideration we may argue that the
strength with which a water surface signal is transferred to the
bottom dJdepends on the ratio between the radian frequency s of the
signal and the natural frequency of the water column@—/—f\' i.e.

)

L 4 16
% = FCFY e

and here we may replace D by D + ?;'/99‘ in order to account for finite
changes in depth herce we have

oo, P
7,3—,/% = F[-‘%"-(:D‘“ﬁ)] (17)

For this purpose we will use the simplest possible estimate of the
local frequency, namely

A2 Pt~ 2B By,
w - — - (18)
7, o

and hence we have

d - REkEoR] -

To determine the empirical function F we now plot the left hand side

of (19) versus the argument of F for a few accurately known data
points, for example taken from Dean's stream function tables (Dean,

1974). That has been done in Figure 4 and we see that F can be
adequately represented by a simple exponential, F(x) = exp(2x/3).
Hence the full expression for our transfer function 1is
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P 2 =P, “’2$ - E« [
= L By
y . e(p[s —ﬂ—kv——**———LM 3 (D+S’j) (20)

a gsimple one line expression which compares favourebly with the
spectral method with respect to accuracy, see Figure L. The
normal ised deviation for the eg(20)-estimates was 0.208 while the
colrespenéing velue for the spectral estimates was 0.242.
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Figure 4 : Date from Dean's stream function tables from which the
empirical function in (19) can be determined. We see that eguation
(20) provides an easy and reliable it to the data.
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Figure 5 : Surface evaluation estimates by equation

(20) and the spectral method compared to actual, mwmeasured surface
elevations, Equation (20) matches both crests and troughs better than
the spectral method and of course it reguires much less computational
effort,
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RESOLUTION VERSUS NOISE

In dealing with real data, there is always a problem of balancing
resolution against noise, especially when high frequency signsle bave
te be amplified strongly es is the case when deriving surface
elevations from bottom pressures,

The resoluticn is determined by the time increment A. 2 small A gives
high resolution while a large A overlooks high frequency variations,
There is no general rule for the choice of A since the optimum must
obvicously dcepend on the relative strength and the difference in
frequency between sic¢nal and noise. Hcwever, the following value will
generally provide & reasonable first guess.

A = V_'D/g (21)

The fact that the meaningful, locally defined freguencies generally
occupy & narrower band than all the harmonics needed for & spectral
description (see Figure 2) means that it is generally possible to
apply @ lower cut off freguency when using a local approximations
method than with a spectreél metbod.

While the above is true, it must be remembered that there are special
troblerms with defining the local frequency near zZero crossings,
Unreasonahly Jerge or imsginary values of «w may occur. A reasonable
upper limit for acceptable local frequencies is W™= 1.5 ¢/D, which
corresponds Lo cosh kb = 2.6

When imeginary or unacceptably large values of w occur it is
generally adequate to assign the value zero to w, at least for those
practicel problens thst have been dealt with so far,

Becavse the details of the water motion close to zero crossings is
generally uvnimportant, the problem of the Jlocal freguency keing ill
conditioned in this area is of little practical conseguence.

DISCUSSION

The use of local approximations via locally defined frequencies is
recommended for ypractical analysis of irregular waves., Firstly
because it requires far Jess computational effort than any other
available method, e,g. wave by wave analysis, Fenton's local
polincmial method (Fenton 1986) or the previcusly most popular
spectral rmethod., Secondly because it seems to be superior to the
spectral method with respect to accuracy.

The strength of local freguency metheds such as (15) or (20) relative
to the linear spectral method lies first of all in the fact that it
is very easy to apply stretching simply by replacing the depth D with
L + 'ﬁ/g g, Secondly, in the fact that the spectral nethod ovel
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amplifies both signael and noise at bigh frequencies. This happens
because it wrongly assumes that "all waves are free waves" in order
to be able to calculate k(w) from the dispersorn relation (14).
Talking about the dispersion relation it must be admitted that
spplying it to a locally defined frequency probably makes very little
physical sense, To this cpe ceén only reply that the Jjustificaticn for
using eguation (15) with its reliance on the dispersion relation (14)
lies in its proven efficiency.

Semi empiricel transfer functions like (20) do not rely on any wave
theo:y but only on a bit of physical intuition and with this somewhat
mer e "uressuming® pature, and their good performance they may turn
out to be the most vseful area of application for the coanceplt of
locally defined freguencies, The conclusions stated in this paper are
egssentially based on experience with a single practical problem,
ramely that of deriving water surface elevations from dynamic
pressures measured at the bottom. This problem is however a very
tough one sc it s highly likely that local approximations using
locally def ined frequencies will prove a useful tool for solving many
problems invelving irregular, non linear waves,
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