
CHAPTER 43 

WAVE GROUP PROPERTY OF WIND WAVES FROM MODULATIONAL INSTABILITY 

Hajime Mase* and Yuichi Iwagaki, M.ASCE** 

ABSTRACT 

This paper discusses wave grouping of wind waves from the 
physical viewpoint of wave modulational instability. Amplitude 
modulation periods obtained from the smoothed instantaneous wave 
energy history (SIWEH) of the observed data are compared with the 
predicted values by the modulational instability theory using the 
Zakharov equation for a finite constant water depth derived by 
Stiassnie and Shemer(1984). The modulation period normalized by the 
typical wave period corresponds to the length of total run. It is 
shown that the amplitude modulation periods of the observed data agree 
satisfactorily with the predicted values. Thus we conclude that the 
modulational instability is a hydrodynamical cause of grouping of high 
waves. 

INTRODUCTION 

In recent years wave grouping has been recognized by coastal 
engineers as an important factor for the stability of rubble mound 
breakwaters, the fluctuation of wave overtopping quantity of seawalls, 
the slow drift oscillation of moored vessels and floating structures, 
the surf beat and so on. Johnson, Mansard and Ploeg(1978) have found 
by laboratory experiments that even if power spectra of random waves 
are the same, the degree of damage of a rubble mound breakwater is not 
the same but depends on the degree of wave grouping; that is, grouped 
waves cause more severe damage of the breakwater than non-grouped 
waves. 

There are three kinds of theoretical approaches to the 
statistical properties of run length and total run length of wave 
heights. One is the theory by Goda(1970) for waves of which successive 
wave heights are independent, the second is the wave envelope theory 
by Nolte and Hsu(1973) and Ewing(1973) for waves with narrow-banded 
spectra, and the third is the Markov process theory by Kimura(1980) 
for waves of which successive wave heights are mutually correlated 
with the property of the Markov chain. Elgar, Guza and Seymour(1984-) 
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reviewed these existing theories and showed that the theories have 
internal inconsistencies in their assumptions and treatments. 

Studies on statistical properties of wave groups of ocean waves 
have been carried out by Wilson and Baird(1972), Rye(1974), 
Chakrabarti and Snider(1974), Goda(1976), Burcharth(1980), Goda(1983), 
Elgar et al.(1984), Mase and Iwagaki(1984) and Battjes and van 
Vledder(1984). In these studies, observations of wave group statistics 
have been compared with the theoretical predictions or with the 
numerical simulation data. It seems from these studies that among the 
theories of run length Kimura's theory is most applicable to waves 
with not only narrow-banded but also wide-banded spectra if the 
correlation parameter which appears in the two-dimensional Rayleigh 
distribution and is related to the correlation coefficient of 
successive wave heights is chosen adequately. However, when the 
correlation coefficient is larger than 0.4, the mean length predicted 
by the theory of Kimura is always shorter than the observed one (Mase 
and Iwagaki, 1984). 

Most of the studies concerning wave groups including theories are 
based on a statistical viewpoint. The existing theories are not based 
on hydrodynamics of wave motion but consider only statistical wave 
properties, such as the wave energy spectrum or the wave height 
distribution. Wave groups are also significant in coastal engineering 
from a viewpoint of hydrodynamics. One is the modulational instability 
and the evolution of finite amplitude surface waves. The other is a 
new model of wind waves such as the envelope soliton model proposed by 
Mollo-Christensen and Ramamonjiarisoa(1978) (wind wave fields are not 
composed of linear component waves but composed of envelope soli tons 
which are formed by Stokes waves) and the modulated nonlinear wave 
model shown by Lake and Yuen(1978) (wind wave fields are considered as 
a modulated nonlinear wave train with a single carrier wave). 

The grouping of high waves can be explained by two different 
viewpoints. One is the statistical viewpoint in which wave group 
statistics are discussed in a framework that wave fields are thought 
to be the superposition of independent linear component waves. The 
other is the hydrodynamical viewpoint such as the modulational 
instability. Benjamin and Feir(1967) have made it clear that a uniform 
wave train in deep water is unstable and that it evolves into a 
modulated wave train. Lake and Yuen(1978) compared the theoretical 
modulation frequency by Benjamin and Feir(1967) with the observed one 
of laboratory wind waves. It was found that both agree qualitatively. 

Even if a parameter representing wave groups is a statistical 
quantity, the characteristic dominated by hydrodynamics is probably 
contained in the statistical quantity. The objective of this paper is 
to discuss the wave group property of natural wind waves from the 
hydrodynamical viewpoint. Concretely, we compare the observed 
amplitude modulation periods (or repetition periods of groups of high 
waves) with the predicted ones from the modulational instability 
theory using the Zakharov equation. The modulation periods normalized 
by the typical wave period correspond to the lengths of total runs. 

ANALYZED WAVE DATA 

Wave data used in this paper were collected at Hikone-Aisei of 
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Lake Biwa in Shiga Prefecture, Japan, where eleven wave gauges of 
capacitance type were installed. Wave observations at Hikone-Aisei 
Wave Observatory and Nagahama Wave Observatory were started by Iwagaki 
et al.(1976) in March, 1975, for the duration of a year to examine 
properties of fetch-limited wind waves. 

Wave data analyzed for amplitude modulation periods are four 
continuous records of storm waves for five hours from 11:27, 18:00, 
and 23:00 on October 5, and from 18:30 on December 16, 1975, recorded 
by the wave gauge N-9 installed in water depth of 4m. The first two 
have been analyzed in the previous paper (Mase and Iwagaki, 1984) from 
the statistical viewpoint. The predominant wave direction was NW when 
the waves analyzed here were recorded, which was nearly perpendicular 
to the shoreline. The slope of the beach was nearly uniform and 

approximately 1/50. 
The records were digitized at a sampling interval of 0.04 s and 

recorded on a magnetic tape. These continuous wave records were 
divided into fourteen segments of twenty minutes long. Fig.1 shows the 
time series of the significant wave height, H\/3 , the significant wave 
period, T\/z , the mean wave height, H, and the mean wave period, T. 
The numbers of individual waves contained in each wave record were 

about 300 to 600. 
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AMPLITUDE MODULATION PERIOD BY MODULATIONAL INSTABILITY THEORY 

As for the analysis of modulational instability of waves, it has 
been shown by Crawford, Lake, Saffman and Yuen(1981) that the Zakharov 
equation first derived by Zakharov(1968) is a useful equation which 
can consider the effect of finite amplitude. In this section, we 
describe the theory of modulational instability using the Zakharov 
equation according to Crawford et al.(1981) and Stiassnie and 
Shemer(1984), and later we compare the amplitude modulation period 
predicted by the theory with the observed one. Crawford et al.(1981) 
used the third order Zakharov equation for infinite deep water, and 
Stiassnie and Shemer(1984) derived the Zakharov equation to the fourth 
order for constant (finite or infinite) water depth and investigated 
the Class I and Class II instabilities by using the modified Zakharov 
equation. In this study, we use the Zakharov equation up to the third 
order for finite water depth derived by Stiassnie and Shemer(1984). 

Let B(k,t) be a kind of amplitude spectrum. The Zakharov equation 
to the third order is expressed as follows (Crawford et al. and 
Stiassnie et al.): 

iaB(gtt]  = JjJ J{k,kuk2,k3)B  (fci, t)e(fc2,t)B(fc3, t) 

xS(fc + fci  - fc2 - fc3) exp(i {co(fc)   + co(fci)   - cofe) 

- co(fc3)} t) dfcidfc2dfc3, (1) 

where * denotes the complex conjugate, fc=(fcx,ku) is the wavenumber 
vector, co is the angular frequency related to the wavenumber as 
co(fc) = (g I fc I tanh \ k I h)]/2 , and 6 denotes the delta function. Eq.(l) 
represents the interaction of amplitude spectra or the slow evolution 
of the dominant components of waves. The kernel T[k,k\ ,fc2,fc3) 
(abbreviated as To, 1,2,3 hereafter) is shown in the paper of Stiassnie 
and Shemer(1984). Since there are some misprints in the expression of 
the kernel, we used the correct expression informed directly by Dr. 
Stiassnie. The kernel To,1,2,3 is seen in Mase and Iwagaki(1986). 

In the case of a uniform wave train with the wavenumber vector 
fco=(fco,0) , the solution of Eq.(l) is 

Bo(fco.t) = boexp(-iTo,o,o,ot>o2t) , (2) 

where Too.o.obo2 is the Stokes corrected frequency due to the 
nonlinearity and bo is related to the actual amplitude ao as follows: 

b0 = 7r(f2)
l/2ao. (3) 

coo 

When disturbances with the wavenumber vectors k\=k$-K and k2=ko+K with 
the amplitudes B\ (fci , t) and Bz{kz,t) ( I B\ I , \ Bz I < I Bo I ) are imposed 
on the uniform wave train, the time evolutions of Bi and B2 are 
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written from Eq.(l) neglecting the squares of small quantities by 

i-^~ = 2 7"i,o.i,obo2Bi  +  T\ ,2,0,082 bo2exp(--i«t), (4) 

i^ = 2 T2,o,2,obo2B2 + Tz.i.o.oBi b0
2exp(--i£t), (5) 

here, 2 = (2 MO - coi - 02) + 2 To,o,o,obo2 • Assuming a solution of the 
form 

B\  =  biexp {-x(0.5 2 - fi)t} , (6) 

B2 = b2exp l-t(0.5 u + !!)t} , (7) 

the following equation is obtained using the condition that the 
non-trivial solutions of b\   and b2 exist: 

A = (72,0,2,0 - Jri,o,i,o)bo2 

+ V{0.5 2 - (Ti,0,1,0 + T2,o,2,o)bo2} 2 - T|.2.o.oT2,i,o.obo
4.  (8) 

When fi is not real, disturbances grow exponentially with time and 
amplitude modulations occur, which means the instability of waves. 

For the two-dimensional case such as K= (Kx,0), the 
non-dimensional perturbation wavenumber K is defined by Kx/ko . Fig.2 
shows the non-dimensional growth rate Im(fi)/(«ofco2ao2/2) as a function 
of /c/2fcoao for various values of fcoao and for five values of koh. 
Fig.2(a) is the same result as given by Crawford et al.(1981). In 
experiments with deep water waves by Lake, Yuen, Rungaldier and 
Ferguson(1977), it was found that even if a uniform wave train is 
generated by a wave-making paddle the wave train modulates with 
increase in the propagation distance due to the growth of the most 
unstable mode which corresponds to the peak of each curve in Fig.2. 
For example, when waves are generated for which fcoao=0.1, disturbances 
with (c/2fcoao =0.87 grow in the case of deep water, see Fig.2(a). It is 
seen from Fig.2 that the domain of the non-dimensional wavenumber 
K/2fcoao becomes narrow and the non-dimensional growth rate of 
disturbances Im(f2)/(«ofco2cto2/2) decreases with decrease in koh for the 
same value of fcoao , when fcoao^0.3 . The modulational instability 
..annot occur if the non-dimensional water depth koh is smaller than 
1.36. 
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Fig.2. Wave    instability   diagram,  (a) fcoh=10.0; 
(b) 3.0; (c) 2.5; (d) 2.0; (e) 1.5. 
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The amplitude modulation period to be compared with the observed 
modulation period is calculated as follows. For given values of fcoao 
and fco/i. the value of K corresponding to the most unstable mode is 
found. The frequencies of disturbances are given as function of K  by 

a/ = ui + 0.5 S - Re(fi), (9) 

£02' = o2 + 0.5 £ + Re(Q), (10) 

where Re(fi) denotes the real part of fi. The frequency of the dominant 
wave including the Stokes correction is 

a  = coo + To.o.o.obo2. (H) 

The non-dimensional difference between frequencies of the dominant 
wave and disturbances becomes 

A = (&>- coi )/« = (to2 - to)/« 

= {0.5(a2 - ai) + Re(fi)}/a. (12) 

Finally, the amplitude modulation period is given by 

(13) 

Until now we have used the wavenumber fco and the amplitude ao of 
a carrier wave. Wave characteristics obtained by experiments and field 
observations are not ao and fco , but the wave height H and the wave 
period T. Therefore, we have to estimate ao and fco by using H and T. 
In the estimation of ao and fco from H, T and the water depth h, we can 
use the third order Stokes wave theory. Since, however, waves observed 
in fields are not uniform, and it is not known what quantity we should 
use as the carrier wave. Lake and Yuen(1978) used the average wave 
steepness in comparing the experimental results of modulation 
frequencies with the theoretical values of Benjamin and Feir(1967). In 
this study, we adopt the significant waves or the mean waves as the 
carrier waves for the time being, and use H/Z as ao and the wavenumber 
determined from T and h  by the small amplitude wave theory as fco. 

Fig.3 shows the time series of values of fca and fc/i obtained from 
the significant wave (designated with subscript '1/3') and from the 
mean wave (designated with subscript' 'm'). 
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Fig.3. Time series  of  wave  steepness  fca  and 
dimensionless water depth kh. 

COMPARISON OF OBSERVED AMPLITUDE MODULATION PERIOD WITH 
PREDICTED ONE BY MODULATION INSTABILITY THEORY 

We use the smoothed instantaneous wave energy history (SIWEH) 
proposed by Funke and Mansard(1979) to calculate the amplitude 
modulation period of field data. The SIWEH, E(t), is described by 

E(t) £V (t+T)Q(T)dT, 
_  ri-lTl/Tp       ITK TP 

y(Tj  - \ 0 I T 1 i Tp 

(U) 

(15) 
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where Tp is the peak period of an energy spectrum, ??(t) the water 
surface variation, and T the time lag. 

The amplitude modulation period can be estimated from the SIWEH 
by various methods. One is to use the peak period of the energy 
spectrum of SIWEH, (Tg)np . The others is to use the mean value of the 
zero-up-crossing times of {E(t)-£} , (T9)MF , in which the SIWEH is 
modified so that the component waves of which frequencies are lower 
than 0.5/(T9)MP and higher than 1.5/(Tg)up are removed by using the 
Fast Fourier Transform technique. The amplitude modulation periods 
(Tg)/./p and (Tg)nF   almost agree, see Mase and Iwagaki (1986). 

Fig.4 shows the comparison of the observed modulation periods 
(Tg)HP and (Tg)nF with the predicted ones (Tg)cs and (Tg)c» where 
(Tg)cs is calculated from the significant wave and (Tg)cM from the 
mean wave by Eq.(13). The predicted values larger than 40.0 s are 
plotted at 40.5 s in the figure. The values of (Tg)cs are large 
compared with the observed values except from 11:30 to 12:10 on 
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23   0    1 
J 1 1 1 

2    3    4 18   19   20   21   22   23 

October,6,1975   r December,16,1975  r 

Fig.4. Time series of observed and predicted amplitude 
modulation periods. 
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October 5 and from 19:10 to 20:10 on December 16 where the value of 
(fch)i/3 is larger than 2.0. On the other hand, the values of (Tg)cM 
agree fairly well with the observed data in a wide range. It is seen 
from the figure that we should better use the mean wave as the carrier 
wave than the significant wave. However, the values of (Tg)cn are 
always larger than the observed ones when the value of (kh)„ is 
smaller than 2.1 (14:30 to 19:30 on October 5). 

Fig.5 shows the comparison of (T9)MF and (T9)CM in a different 
form. This figure indicates that the agreement between both values is 
satisfactory as far as the mean values are concerned. When the 
non-dimensional water depth (,kh)n is small, the difference between the 
predicted values and observed ones becomes large the reason is 
explained in the following discussion. 

40 

32 

C    24 

16 

80o Ao 
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8     16    24    32    40 

Modulation Period, (T )Mf: (sec) 

Fig.5. Comparison of observed amplitude modulation 
period with predicted one. 

DISCUSSION 

The Zakharov equation derived by Stiassnie and Shemer(1984) was 
applied to the present study. In spite of the sloping beach of 1/50, 
the modulational instability theory by the Zakharov equation can 
predict the amplitude modulation periods of wind waves sufficiently 
when the non-dimensional water depth is large ((fch)„>2.1 according to 
the present study). However, there are slight differences between the 
observed and predicted values of amplitude modulation periods in the 
case when the water depth is relatively shallow. As shown in Fig.2, 
the growth rate of disturbances becomes small and the difference 
between frequencies of the dominant wave and the disturbances becomes 
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small with decrease in the water depth. Thus, for waves propagating 
from deep water into a region with small water depth (as (kh)m<2.1), 
it is considered that amplitude modulations to be formed do not take 
place sufficiently due to the small growth rate of sideband modes, and 
that the deep-water amplitude modulation period remains dominant at 
the shallow-water observation point. 

In the experiments of evolutions with the fetch or with the 
propagation distance of laboratory wind waves by Hatori(1984) and of 
mechanically generated random waves by Mase, Furumuro and 
Iwagaki(1984), it was found that there are several significant spikes, 
or sideband modes around the spectral maximum. The existence of 

sideband modes indicates that a phenomenon of wave modulational 
instability occurs in wave fields. Furthermore, Fig.5 in this paper 
and Fig.13 in the paper of Lake and Yuen(1978) both show that the 
modulational instability is an important factor in grouping of high 
waves. 

At present, random waves used in experiments are simulated so 
that their energy spectrum matches a certain target spectrum. However, 
the sequence of waves, or wave groups, must be considered to simulate 
the more realistic sea waves. Funke and Mansard(1979) proposed a new 
technique of random wave simulation which simulates waves to match a 
target spectrum and a target SIWEH. Mase, Kita and Iwagaki(1983) used 
the same technique to simulate random waves. From the present study, 
it is found that the agreement between the amplitude modulation 
periods obtained from SIWEH of field data and predicted ones by the 
modulational instability theory is fairly good. This implies that the 
mean value of repetition periods or the peak period of the target 
SIWEH used in the random wave simulation must coincide with the 
theoretical modulation period determined from the wave height and the 
wave period. 

CONCLUSIONS 

The grouping of high waves can be explained by two different 
viewpoints, the statistical and physical viewpoints. Most studies 
concerning wave groups including run theories depend on the 
statistical viewpoint. In this paper, we discussed the wave group 
property of wind waves from the physical viewpoint of wave 
modulational instability. We chose the amplitude modulation period as 
a representative factor of the wave group property. The modulation 
period was calculated from the smoothed instantaneous wave energy 
history. The theoretical modulation period was calculated by the 
modulational instability theory using the Zakharov equation. 

A comparison of the observed and theoretical modulation periods 
showed acceptable agreement if the mean wave was chosen as the carrier 
wave. In particular, when the non-dimensional water depth is as large 
as (fch)n,>2.1 , both periods agree well. However, there was a slight 
difference between both values in the case of shallow water depth, 
which is attributed to the small growth rate of sideband modes and the 
effect of the remaining modulation period dominant in the deeper water 
depth. Thus we conclude that the modulational instability is a 
hydrodynamical cause of grouping of high waves. 
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