
CHAPTER 40 

EVALUATION OF A MODIFIED STRETCHED LINEAR WAVE THEORY 

by 

Jen-Men Lo and R. G. Dean 

Introduction 

Many experimental investigations of the drag and inertia force 
coefficients have relied on the determination of water particle 
kinematics from measured wave forms. Since the pioneering work of Airy 
(1845), Stokes (1847, 1880) and others, a number of wave theories have 
been developed for predicting water particle kinematics. Clearly, the 
use of a certain wave theory will lead to corresponding force coef- 
ficients. Therefore, a wave theory that provides more accurate water 
particle kinematics is very important. 

Reid (1958) developed the simple superposition method for pre- 
dicting water particle kinematics from a measured sea surface that 
could be either random or periodic. The method is based upon linear 
long-crested wave theory. Borgman (1965, 1967, 1969a, 1969b) intro- 
duced the linearized spectral density of wave force on a pile due to a 
random Gaussian sea. The drag force component has been approximated 
in the simplest form by a linear relation. This method, however, 
cannot calculate properties of the wave field and wave force above the 
mean water level. 

Wheeler (1969) applied simple superposition with a stretching 
factor in the vertical coordinate position for hurricane-generated 
wave data during Wave Project II. With this method it was possible to 
evaluate the wave force above the mean water level. 

Hudspeth, et al. (1974) compared the wave forces computed by 
simple superposition and irregular stream function methods. By using 
the simple superposition and a stretched vertical coordinate to calcu- 
late water particle kinematics, the comparison between measured and 
calculated forces indicates the stream function method was generally 
better than the linear wave theory method. The magnitudes of the dif- 
ference between the theories, however, is not consistent. For maximum 
forces, the differences are not great.  They noted that the linear 
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wave theory provides greater facility in carrying out certain mathe- 
matical operations than is possible using nonlinear wave theories. 

The advantage of using the simple superposition method is that 
the entire measured sea surface data can be analyzed without the need 
to consider only one extreme wave using a nonlinear symmetric wave 
theory or irregular stream function theory. This paper will introduce 
a new mathematical stretching factor similar to the stretching factor 
used by Wheeler (1969). For several wave conditions, the symmetrical 
stream function wave theory, the stretched linear wave theory, and the 
new approach will be compared. 

Simple Superposition 

To simplify the problem, only two-dimensional wave motion will be 
considered. A long, irregular sequence of linear waves can be repre- 
sented as an infinite sum of simple harmonic waves with closely spaced 
frequencies and random phase angles, i.e., 

n(x,t) = £ an cos (knx - aflt + an) (1) 

where ri is the water surface displacement; an •» /2Pr)(an)Ao; P^CCTJ,) is 
the (one-sided) energy density spectrum of the irregular sea, varying 
with angular frequency an; kn is the wave number for the nth wave com- 
ponent (kn = 2ir/Ln); Ln is the wave length of the nth wave component; 
x is distance and an is the phase angle for the nth wave component. 

When the small amplitude wave theory is used to estimate the flow 
regime in a wave system from the surface profile (Eq. 1), the velocity 
potential may be expressed by 

a g cosh k (h+z) 
<|>(x,z,t) = £ — , " ,— sin (k x - a  t + a )      (2) T  ' '      a    cosh k h       n    n    n 

n n        n 

where z is referenced to the mean water surface and is positive 
upwards.  The dispersion relationship is given by 

2 
a = gk tanh k h (3) 
n    n     n 

The horizontal water particle velocity component is given by 

3*    ankng C0Sh kn(
h+z) 

u(x,z,t) = - -r*- = £ r—;—r— cos(k x - a t + a )    (4) 
3x      a    cosh k h       n    n    n 

n   n        n 

From Eq. 4, the horizontal water particle kinematics at any given time 
or any given position can be found very easily. But when the position 
is close to the free surface, the results are not in agreement with 
laboratory or field data. Mathematically, Eqs. 2 and 3 are determined 
individually, component by component, using the small amplitude wave 
theory approach assuming that all wave components are independent of 
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each other. Fig. 1 shows a high-frequency wave component superimposed 
upon a low frequency wave component. Evaluating Eq. 4 at a time when 
both components are maximum, the vertical surface coordinate is z 
= ai + a2» and it is found that the contribution of the high-frequency 
component to the kinematics is exaggerated by the vertical 
displacement due to the large low-frequency wave. 
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Fig. 1. Superposition of 
wave. 

a high frequency wave on a low frequency 

Stretched Linear Wave Theory (SLWT) 

The simple superposition technique was first developed by Reid in 
1958. Wheeler applied the technique to hurricane-generated wave data 
in 1969. The simple superposition technique, however, predicts unrea- 
sonably large wave kinematics when it applies to locations that are 
above the mean water level. Therefore, Wheeler introduced an intui- 
tive stretching factor to predict the wave kinematics by using the 
simple superposition method. If kinematic predictions are desired at 
elevation S = h + z above the bottom (where h is the mean water 
depth), then the stretching results in calculations being carried out 
at elevation S' above the bottom, where 

S'(x,z,t) = a(x,t)S (5) 

and 

a(x,t) 
h+n(x,t) 

(6) 
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Here n(x,t) is the instantaneous water surface displacement measured 
from the mean water level. This vertical stretching is particularly 
significant near the free surface. It is of interest to note that the 
velocity potential that is stretched in this manner no longer exactly 
satisfies the Laplace equation. 

By using the stretched linear wave theory, the kinematics (and 
other quantities) calculated at the actual free surface are the same 
as those evaluated at the mean water level in an unstretched system, 
thus eliminating the exaggeration of the high frequency component 
described previously. 

Stream Function Wave Theory (SFHT) 

The stream function wave theory, as described by Dean (1965), can 
be used to represent both theoretical symmetrical and irregular waves. 
In application, the theory is used to generate a symmetric wave with 
given parameters, such as wave height, period, and water depth. It is 
this symmetric form of the stream function wave theory that will be 
used in the comparison. 

Taking a frame of reference moving with wave celerity C, the 
problem is reduced to a steady form. Then the kinematic free surface 
boundary condition becomes 

v=_. (u_ C)^= - —^on z = n(x) (7) 

where v is the vertical velocity component and f is the stream func- 
tion. Eq. 7 is satisfied exactly by the equation for the stream 
function: 

T       m ? 9 
¥(x,z) = ^z + I    A(n) sinhp^ (h+z)] cos(^ x)      (8) 

n=l 

Evaluating this expression on the free surface, i.e., setting z <• r\, 
the free surface is 

NN 

" " J *n " f E A(n) Slnh[-TT <h+n>] cos(^L X)       (9) 
n=l 

Since the coordinate system is moving with the wave celerity, and the 
pressure is zero on the free surface, the dynamic free surface 
boundary condition is 

j-  ((u-C)2 + v2) + n = Q on z = n(x) (10) 

where Q is the total head or "Bernoulli constant" on the free surface. 
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The numerical problem of establishing the wave theory is thus one 
of determining values of A(l), A(2),  A(NN), L, fn, such that the 
dynamic free surface boundary condition is satisfied as closely as 
possible. These coefficients are determined iteratively employing a 
nonlinear least-squares procedure. 

Modified Stretched Linear Wave Theory (MSLWT) 

The SLWT was reported to be based on wave tank studies; Lo (1979) 
introduced a new stretching factor by using the free surface boundary 
conditions. Assuming that the pressure is zero on the free surface, 
the dynamic free surface boundary condition is 

L- (u2 + v2) + z - | |£ = C(t)   ,  z = ti (11) 

The kinematic  free  surface boundary condition is 

|l+ug=v       ,       z =  n (12) 

Eqs. 11 and 12 are nonlinear partial differential equations, and the 
nonlinearities come from two major sources. One is the product terms 
in the equations, i.e., u^, v^ and u 3n/3x; the other is that the 
equation applies to the actual free surface, z = n. The most popular 
technique for solving these equations is by using the Taylor series 
expansion to expand the value of the condition from z = 0 to z = n 
(mean water level, a known location), then by using the perturbation 
procedure to solve the equations order by order. For example, the 
small amplitude wave theory is the solution of the first order, and 
the Stokes theories of various orders are extensions of the approach. 

The MSLWT will be solved to the first order by using Eqs. 11 and 
12 only on the free surface z = n.  The solution is: 

n(x,t) = a cos(kx - at) (13) 

•,<»*.*> - - f nt k s$ •*<* - <*> <i4> 

a2  = gk tanh k(h+n) (15) 

Eqs. 13, 14 and 15 satisfy the boundary conditions (without the 
product terms in Eqs. 11 and 12) exactly. But, like the solution of 
the stretched linear wave theory, they no longer satisfy the Laplace 
equation. The effective wave number k now depends on water surface 
displacement. Comparing the solution for small amplitude wave theory 
with that for the modified stretched linear wave theory, the new 
stretching factor found for the modified stretched linear wave theory 
is given by 
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Stretching Factor - J^*  g+^ (16) 

This stretching factor was established by using the boundary condi- 
tions of the wave system. For a given time, position and mean water 
depth, this factor will be a constant through the vertical coordinate. 
But under the same conditions, the stretching factor for the stretched 
linear wave theory (Equations 5 and 6) is a function of depth, and it 
has a maximum value at the free surface, a minimum value at the 
bottom. 

To describe the statistical properties of a random water surface, 
it is convenient to decompose the variable of interest into Fourier 
components. The Fourier series representation of the water surface 
displacement is given by the simple superposition method as Eq. 1. 

When the MSLWT is used to estimate the flow regime in a wave 
system from the surface profile, the velocity potential may be 
expressed by 

a g cosh k (h+z) 
<i>„(x,z,t) = - E :—5—7TT,—r sin (kx-at + <x)   (17) YmvA• *' *•'      a  cosh k (h+n)     n    n    n 

where the dispersion relationship is given by 

°n = g kn tanh kn
(h+n) (18) 

and the first order horizontal and vertical water particle velocities 
are derived from Eqs. 17 and 18, as follows: 

cosh k (h+z) 
um(x,z,t) = E a a      .  , .—,. . . cos(k x - a t + a )   (19) 
m  ' '       n n sinh k (h+n)     n    n    n 

n n 

and 

sinh k (h+z) 
v„(x,z,t) = X a a  . . .—,., > sin (kx-fft+a)   (20) 
•  ' '       n n sinh k (h+n)      n    n    n 

Comparison Between SLWT and MSLWT 

Ohmart and Gratz (1978) presented a comparison of measured and 
predicted ocean wave kinematics. They found by comparing linear wave 
theory, Stokes Fifth Order Wave Theory and the Irregular Stream 
Function Wave Theory (IRSF) that IRSF yields better results. The 
field data were measured from the test structure (the CAGC Eugene 
Island 266F platform), located in the Gulf of Mexico. Mean water 
depth was 177 feet. A wave staff was mounted on one corner of the 
structure. The current meters were mounted at elevations of 5 and 20 
feet below mean water level. 
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A 34 minute block of data was recorded each two hours or four 
hours depending upon the severity of the storm. The data sampling 
rate was at 0.5 second intervals. 

Two sets of Ohmart and Gratz's data were selected for comparison 
with IRSF, the MSLWT, and the SLWT. Both sets were measured during 
storm Delia in September 1973 and in the deep water region. Figs. 2-5 
present a representative comparison of the horizontal water particle 
velocities among the data, the IRSF theory, the MSLWT and the SLWT. 
The comparison shows that both the MSLWT and SLWT agree reasonably 
well with the data. The SLWT yields a better result (4% closer to the 
data) than that of the MSLWT near the crest phase angle. 

Stream function wave theory (SFWT) results are known to provide a 
reasonably good fit with laboratory and field data. Therefore, a 
comparison between the SLWT, MSLWT and SFWT was also studied. 

The SFWT is a nonlinear wave theory, thus the wave components 
given by Eq. 1 for the SLWT and MSLWT cannot be regarded as inde- 
pendent linear components. Rather these components are nonlinear 
harmonics of the fundamental. Therefore, the wave number k cannot be 
solved component by component using the dispersion relationship (Eq. 
3) for the SLWT and Eq. 15 for the MSLWT for this condition. Only the 
first component can be solved for the wave number based on Eqs. 3 and 
15; in general, the wave number of the nth component is nk. 

Six sets of dimensionless wave conditions were selected for tabu- 
lation and evaluation from Dean's stream function tabulations (1974). 
Each case is characterized by values of h/L0 and H/L0. In the present 
study, three values of the parameter h/L0 ranging from 0.002 to 2.0 
were selected and include the relative depth range of shallow, inter- 
mediate, and deep water. The parameter H/L0 includes wave steepness 
ratios: 0.25 and 1.0 of the breaking wave steepness for each of the 3 
h/L0 values. Fig. 6 shows the dimensionless wave conditions selected 
for evaluation and also indicates the referencing notation for the 
cases. Tables I and II present the horizontal water particle velocity 
comparison between the MSLWT and SFWT, and SLWT and SFWT for wave case 
No. 2. The wave steepness (H/L0) for wave case 2 is 0.001564, and the 
relative depth (h/L0) is 0.002 (Note: This wave is at breaking). 

The percent values listed in the tables are the differences 
between the SFWT and the MSLWT (or the SLWT), defined as 

_      MSLWT (or SLWT) - SFWT  .nn ,„.. 
Percent =  *—gFWI   x 100 (21) 

The main body of the table lists the dimensionless horizontal 
water particle velocities of the MSLWT (or SLWT). The row labelled 
"surface" represents the dimensionless velocities evaluated at the 
free surface; the percentage differences for velocities are calculated 
as defined above (Eq. 21). The remaining part of the table represents 
the dimensionless velocities and percentage differences evaluated on a 
grid of (0, S/h). The lack of entries for the higher S/h and larger 9 
values (right side of page)  result from the fact that the wave profile 
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Fig. 2. Horizontal water particle velocity at a water depth of 172 
feet for wave condition Group 2. Comparison of various wave 
theories with data by Ohmart and Gratz. 
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l. Horizontal water particle velocity at a water depth of 157 
feet for wave condition Group 2. Comparison of various wave 
theories with data by Ohmart and Gratz. 
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Fig.    4. Horizontal water particle velocity at a water depth of 172 
feet for wave condition Group 7. Comparison of various wave 
theories with data by Ohmart and Gratz. 
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Horizontal water particle velocity at a water depth of 157 
feet for wave condition Group 7. Comparison of various wave 
theories with data by Ohmart and Gratz. 
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Fig. 6.  Dimensionless wave characteristics selected for tabulation. 

in the trough region is lower than in the crest region (left side of 
page). If asterisks appear, it means that the percentage differences 
are very large and cannot be covered by the computer output. This 
avoided the tabulation of very large percentages that would have been 
the result of division by a small number. Generally, although the 
asterisks indicate a large percentage error, they occur at locations 
where the denominator in Eq. 21 is near zero and are associated with 
small absolute differences. Finally, it is noted that the small 
percentage differences in relative water surface displacement are due 
to the stream function profile being used to develop a truncated 
Fourier series representation as an input water surface profile to 
both of the stretched wave theories. Figs. 7 and 8 present a 
comparison of the horizontal water particle kinematics between the 
SFWT, SLWT, and MSLWT under the crest. From this comparison, the 
MSLWT provides a better fit to the SFWT than for the SLWT. 

Summary and Conclusions 

A new stretching factor was developed based on the first order 
free surface boundary conditions. The simple superposition method and 
the modified stretched linear wave theory, provide reasonable agree- 
ment with the water particle kinematics from the Stream Function 
Tables. This technique is useful and convenient for the following 
reasons: 
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1. The simple superposition method and the MSLWT can be used to 
analyze any length of irregular wave records for design and 
dynamic studies of offshore structures. Through the superposition 
method, a given wave record (usually available as a function of 
time only) can be represented as an infinite sum of simple 
harmonic waves with closely spaced frequencies and appropriate 
phase angles. 

When the MSLWT is used to estimate the flow regime in a wave 
system from the surface profile, Eqs. 16, 18, 19 and 20 allow the 
calculation of the potential function and the kinematics. 

This method is convenient for the analysis of long and irregular 
wave profiles which can be characterized by power spectra and thus 
related to statistical wave prediction techniques that relate wave 
spectra to weather history for a given location. 

2. Most nonlinear wave theories require a periodic wave profile, but 
by using the simple superposition method and the MSLWT, aperiodic 
wave profiles can be analyzed. 

3. Based on the MSLWT, the spectral and probabilistic approaches to 
wave force prediction can be extended to include calculations from 
the sea floor to the free surface without neglecting the contribu- 
tion from the mean water surface to the free surface. 

4. In laboratory studies of nonlinear waves, the simple superposition 
method and the MSLWT will yield reasonable kinematic predictions. 

5. A more extensive comparison between field data and the result of 
using the simple superposition method and the MSLWT is desirable 
and will be pursured when additional data are available. It is 
planned to extend the MSLWT to account for nonlinear terms 
included in the complete free surface boundary conditions. 
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