
CHAPTER 24 

A PARABOLIC REFRACTION-DIFFRACTION EQUATION 

IN THE RAT-FRONT COORDINATE SYSTEM 

Masahiko Isobe 

ABSTRACT 

The parabolic equation method has been extensively used for 
combined refraction and diffraction problems of water waves. However, 
a parabolic equation is valid only when the direction of wave 
propagation nearly coincides with that of a coordinate; therefore, the 
validity ranges of the parabolic equations developed so far are 
restricted. 

In order to achieve a wide range of validity, a parabolic equation 
is derived in this paper by employing a curvilinear coordinate system 
which has a pattern similar to that of wave rays and fronts. A 
computer program which is applicable to an arbitrary arrangement of 
coastal structures is then developed. 

Results of numerical calculations are compared with available 
analytical solutions and laboratory data. It is proved that the 
present parabolic equation has a high accuracy for a wide range of 
incident wave direction and structure arrangement. 

1.  INTRODUCTION 

In order to analyze the wave transformation due to combined 
refraction and diffraction, the mild-slope equation was derived by 
Berkhoff (1972). The mild-slope equation is an elliptic-type partial 
differential equation; hence the numerical calculation needs much 
computing time. Therefore, Radder (1979) and Tsay and Liu (1982) 
derived parabolic approximation equations which save a great amount of 
computing time and storage. Recently, the parabolic equation method 
has been modified in order to include the effects of wave nonlinearity 
(Kirby and Dalrymple, 1983; Liu and Tsay, 1984.) and energy dissipation 
(Dalrymple et al., 1984; Liu and Tsay, 1985). However, the validity 
ranges of the parabolic equations are restricted due to the assumption 
that the direction of a coordinate nearly coincides with that of wave 
propagation. 

The primary objective of this study is to derive a parabolic 
equation which is applicable even if the incident wave angle relative 
to the onshore direction and the longitudinal direction of a structure 
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is large. This is done by employing a curvilinear coordinate system 
which has a pattern similar to that of wave rays and fronts. A 
computer program which can be applied to an arbitrary bottom profile 
and structure arrangement is developed. Results of numerical 
calculations are compared with available analytic solutions and 
laboratory data. 

2.  DERIVATION OF PARABOLIC EQUATION 

2.1  Basic Concept 

When Radder (1979) first derived a parabolic equation, Cartesian 
coordinates were employed. Therefore, if the incident wave angle is 
large, the direction of the coordinate significantly differs from that 
of wave propagation. In Tsay and Liu (1982), curvilinear coordinates 
following Snell's law were employed, which implies that the change in 
wave propagation direction due to refraction is taken into account. 
However, since the coordinates are determined independently of 
structures, a significant difference between the directions of the wave 
propagation and the coordinate occurs in the shadow region. 

Waves are observed to propagate following Huygens1 principle. If 
we define a coordinate system following this principle, the resulting 
coordinates must coincide with the wave ray and front pattern. We call 
this coordinate system a "ray-front coordinate system." Figure 1 shows 
an example of ray-front coordinate system. Rays 7 to 11 are incident 
wave rays, refracted by the change of water depth. Rays 1 to 5, and 12 
and 13 are radiated from the tips of breakwaters and then refracted. 

Initial 
wave front 

Fig. 1 Example of ray-front coordinate system. 



308 COASTAL ENGINEERING-1986 

Thus we can define a ray coordinate, and then a front coordinate from 
the orthogonality condition. By this definition, the direction of wave 
propagation almost coincides with that of the ray coordinate; 
therefore, the parabolic equation in this coordinate system is expected 
to be valid for a wide range of incident wave condition and structure 
arrangement. 

2.2 Ray-front Coordinates 

Consider curvilinear coordinates (f , y) as shown in Fig. 2. The 
directions of f and 7 respectively represent those of wave rays and 
fronts following Huygens' principle; thus the direction, a, of the f- 
coordinate can be determined by the following ray equation in the 
refraction problem: 

1 da 
hi   5? 

1 1 dK 
~~K h,   3V 

(1) 

where ht and hn are the scale factors of the curvilinear coordinates; 
hence h(d$ and h^d-q represent the lengths of short line elements. 
The quantity K is the wave number and usually can be calculated from 
the given local water depth by the dispersion relation. However, wave 
rays often intersects with each other for complicated bottom 
topographies; thus K is calculated from a slightly-modified water 
depth. The modified bottom topography may be taken as that with 
straight and parallel bottom contours, since a slight difference 
between the directions of the coordinate and wave propagation is 
allowed in the derivation of a parabolic equation. By this 
modification, the intersection of wave rays does not occur. The scales 
of axes are arbitrary; hence, we can take A{ = A, = 1/K without loss 
of generality, with which the values of the coordinates have the 
dimension of phase angle. 

( € , n ) 

\  (wave front) 

( £+d? , n7 

(wave ray) 

( C+dC , n+dn ) 

Fig. 2 Curvilinear coordinates 
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Once a is determined by Eq. (1), the position (x, y) along the f- 
coordinate can be calculated by 

If the position of a point on a front line is given, the position 
of the point advanced along a ray to the next shoreward front line can 
be determined by numerically integrating Eqs. (1) and (2) by the Runge- 
Kutta-Gill method. Then the ^-axis can be determined as the line of f 
= const. 

2.3 Parabolic Approximation 

Berkhoff (1972) derived the mild-slope equation which governs the 
combined refraction and diffraction of periodic small-amplitude surface 
gravity waves over a seabed of a mild slope: 

(7(Gi75>)+fc2Gp=0 (3) 

where G = cc„ (c: wave celerity, cg: group velocity), k is the wave 
number calculated from the given local water depth by dispersion 
relation, and V is the differential operator in the horizontal 
directions. The quantity 91 represents the complex amplitude of the 
water surface fluctuation. From 4>, the water surface fluctuation, £ , 
and the velocity potential, 0 , are expressed as 

C=55e-
i«" (4) 

J_C0Shk(d + 2) 
ia>      coshkd    V °; 

where ai is the angular frequency, g the gravitational acceleration, d 
the given local water depth, z the vertical coordinate measured upward 
from the still water level, and t the time. 

Equation (3) can be reexpressed in the curvilinear coordinates 
( £ , n  ) as 

which is an elliptic-type partial differential equation. In the 
following, we approximate the mild-slope equation (6) to a parabolic 
equation following Radder (1979). 

Equation (6) can be rewritten as 

JLJ_/-i_i£\ = i i d(Gh,)  i  a? _( i Llfr*tlUinU   ti\ 
h( 9?Uf  3?;       Gh, h(     3?     he  3?       (Gh( k, fcj V   A, 3v 1       ) 

Here, we assume that <j> can be splitted into two parts: the complex 
amplitudes ?S+ and <j>~ due to incident and reflected waves, respectively, 
i.e., 
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0=0++0- (8) 

4*~a*exp(±i[khsdi\ (9) 

From Eqs. (8) and (9),  we have 

A-^±=ik<f,+-ik6- (10) 
he   d? 

Then, we can eliminate $~ from Eqs. (8) and (10): 

^+=lj>+_L. JL M. (11) 

By taking the gradient of Eq. (11) in the direction of fand 
substituting Eq.   (7),   we  obtain 

j_^+_ l_(^L_LJL/'Gi*ti-
N| ,k,\6 

h(   3f _    2ih\Gh(  *,  d7]{   h, 3^        \9 

,(J_ L._Li* L._i    1 iKGh,)) 1  a^ ,    . 
"t"(2     21'ft8  Af  3?      &'fc G/z,  Ae     3f    j h;  d$ K     ' 

On substituting Eqs. (8) and (10), we have a differential equation 
which contains fi+and <j>~. Here, we further assume that J0+|>>|0~[ , 
i.e., •f>+'=. $ and j5~== 0. Thus we finally obtain the following 
parabolic equation for   s*: 

113 
Gh(  hv  Si? <%%Hit +14il(^H^°  (13) 

In order to make the change of 5S slower, we transform the unknown 
variable from j to (S as 

0=$exp(i[Khedi\ (U) 

Since K is the approximate local wave number, the exponential term in 
the above equation roughly represents the phase of i", hence, the 
spatial change of <l> is expected to" become slow. On substituting Eq. 
(H) into Eq. (13), we obtain the following parabolic equation for </>'. 

Equation (15) is parabolic; therefore, we can numerically solve 
it step by step from offshore to onshore if adequate boundary 
conditions are given. It should be noted that Eqs. (13) and (15) agree 
with those of Radder (1979) when they are described in Cartesian 
coordinates. 

In deriving parabolic equations, we can adopt slightly different 
assumptions, obtaining different equations in high-order terms. 
However, the result of numerical calculation showed that the present 
parabolic equation has the highest accuracy among several possible 
equations. 
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2.4.    Physical Interpretation of Parabolic Equation 

Following Berkhoff et al.  (1982),  we separate the amplitude and 
phase  of <l> as 

tp=ae" 

On substituting Eq. (16) into Eq. (15), we have 

(16) 

1   de    i-TC- W1   3£V  1      l       1    3 (rhl 3a\ nn\ 
ks   3f 2k\hv   drj)     ^2akGh(   h,   dr)V h,   dr, ) K    " 

^[±(a^)+iv{a^fvO^0 (18) 

from real and imaginary parts, respectively. Equation (17) can be 
rewritten as 

r.     1   3eV    /l   3e\2      ,      f,     /„     1   ae\)2   ,      119 [„ hs  8a\   ,     , K+T^)+\1T^)   =&2+M*+*7w)i  +^T,T,(Gt^) (19) 

Equation (19) corresponds to the eikonal equation in refraction 
problems but includes the effect of diffraction in the y-direction as 
seen from the last term on the right hand side. 

Since G = » c,/k, Eq. (18) represents the conservation of wave 
energy. In the firs% parentheses, however, the 5-component of the wave 
number should appear instead of k itself. Therefore, if the direction 
cosine in the f-direction is significantly less than unity, i.e., the 
direction of wave propagation is significantly different from the f- 
direction, the error of the present parabolic equation will become 
large. Usually this does not occur, since the coordinates are 
determined following Huygens'   principle. 

2.5    Boundary Condition 

The condition of complete reflection is imposed on fixed 
boundaries; thus the derivative of 9S in the normal direction of the 
boundaries becomes  zero.     This  can be  expressed in terms of ifi as 

ilr(it+^H=° (20) 

where d denotes the direction angle of the boundary measured from the 
S  -direction toward the ^-direction. 

The first term in the parentheses of Eq. (20) is usually small 
compared to the second term; therefore, it can be neglected as 

4"-^—«'^ tan 5=0 (21) 
«, 07] 

The accuracy of numerical caculation was higher when Eq. (21) was 
adopted as the boundary condition than when Eq. (20) was adopted. The 
reason of this result is not clear, but the error of Eqs. (18) and (21) 
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may cancel with each other.  Hereafter, Eq. (21) will be used for 
boundary conditions. 

For open boundaries, Eq. (21) with 5=0 was used. This means 
that the waves propagate in the ?-direction just by refraction and the 
gradient in the ^-direction is zero. If the open boundaries are 
located far from structures, they give no influence on the wave field 
around structures. However, once the disturbance from structures 
reaches the open boundary, the present condition induces the reflection 
of the disturbance. 

3. PROCEDURE OF NUMERICAL CALCULATION 

In order to determine the ray-front coordinates, Eqs. (1) and (2) 
were integrated by the Runge-Kutta-Gill method. The Crank-Nicholson 
scheme in which the weights for the old and new front lines are equal 
was applied to solve the parabolic equation (15). The weights for the 
two lines in the boundary condition were also taken equal. 

The procedure of numerical calculation is summarized as follows: 

1) Determine the position of an initial front line and the values 
of <P  on the line from Snell's law. 

2) Determine the position of the front line at the next step by 
Eqs. (1) and (2). From the tip of a structure, new wave rays 
are added as rays 1,2,3 and 5, or 12 and 13 in Fig. 1. If the 
distance between two adjacent rays exceeds a given value, new 
rays are also added by interpolation as rays 4,6, and 14. in 
Fig. 1. 

3) Solve the parabolic equation (15) in order to determine the 
value of </>  on the new front line. 

k) Repeat 2) and 3) until the domain of calculation is covered 
with the ray-front coordinates. 

A FORTRAN program which can be applied to an arbitrary incident 
wave condition, boundary condition, and bottom topography was 
developed. 

A.     RESULTS 

4..1    Comparison with Analytical Solutions 

In Fig. 3, circles show calculated wave height changes due to 
refraction. Waves are incident obliquely to a plane sloping beach with 
a slope of 1/10. In the figure, 90 denotes the wave angle in deep 
water, d/L0 the ratio of local water depth to deep-water wavelength, 
and H/H0 the ratio of local wave height to deep-water wave height. In 
the numerical calculation shown in this figure, the grid size to 
wavelength ratio, 4/L, is 1/20, which was proved to be sufficiently 
small by numerical experiment.     Solid lines  indicate  wave height 



PARABOLIC EQUATION 313 

changes obtained by Snell's law. 
incident  wave angle is large. 

The agreement is good even if the 

Next, the diffraction coefficient due to semi-infinite breakwater 
is examined. Figure A shows the diffraction coefficient along the line 
from A to B and from B to C. Various symbols indicate the results of 
the present numerical calculations with various grid sizes. The 
analytical solution by Penny and Price (1952) is shown by a curve. 
Though the small oscillation from A to B is not accurately reproduced, 
the agreement is good on the whole. Figure 5 compares the numerical 
and analytical diffraction coefficients behind a semi-infinite 
breakwater for various incident wave directions. The agreement is good 
for a wide range of incident wave direction. 

Figure 6 compares the wave height distribution in front of the 
breakwater. Since the ray-front coordinates are defined from the 
direction of the incident waves, the {-direction can be significantly 
different from the propagation direction of the reflected waves. 
Therefore, as seen from the open triangles in Fig. 6(b), the calculated 
oscillation of wave height differs significantly from the analytical 
solution. A mirror image technique was employed to improve the 
accuracy of calculation in the reflective region: 1) the semi-infinite 
breakwater is first removed, 2) a numerical solution is obtained for a 
semi-infinite breakwater with 6o=-90° (this value does not change the 
result significantly), and 3) the solution is folded along the given 
semi-infinite breakwater and superimposed. Closed symbols indicate the 
results; the agreement between the numerical and analytical results 
become  much better. 

Fig.  3    Comparison of numerical and analytical wave height changes due 
to refraction. 
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Fig.  4    Effect  of  grid  size    on  the  diffraction  coefficient     around  a 
semi-infinite breakwater. 

Crank-Nicholson   method 
(A/L = 0.05 ) 

Numerical    4J. 
Analytic 

Fig.   5    Comparison   of   numerical      and   analytical   diffraction 
coefficients just behind a semi-infinite breakwater. 



PARABOLIC EQUATION 315 
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Kd 

2  - 

1.5- 

1   - 

0.5 

(b) 
Crank-Nicholson   method 
( A / L = 0.05 ) 

,=15" 

Numerical M 
Numerical ^J, 
(mirror image) 
Analytic 

Fig.  6    Comparison    of   numerical    and   analytical    wave    height 
distributions in front of a semi-infinite breakwater. 
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4.2 Comparison with Experimental Data 

Figure 7 shows the present experimental apparatus. A wave basin 
which is 9m wide and 9m long was used. As seen in the figure, a plane 
beach with a slope of 1/15 was attached and breakwaters were arranged 
on the beach. A flap-type wave maker was set obliquely to the wave 
basin. Capacitance wave gages were used to measure the water surface 
fluctuation. The incident wave height, period, and angle were 9.1cm, 
0.83s, and 18°, respectively. 

Figure 8 compares the calculated and measured wave height 
distributions from A to A1 and from B to B'. The agreement is fairly 
good. In shallower region, time history of water surface fluctuation 
becomes asymmetrical due to nonlinear effect; hence comparison was not 
made. 

5.  CONCLUSION 

Curvilinear coordinates which follow Huygens1 principle and are 
named ray-front coordinates were introduced. In the coordinates, a 
parabolic equation for combined refraction and diffraction of water 
waves was derived. Numerical calculation was carried out and the 
results were compared with available analytical solutions and 
experimental data. 
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Fig.  7    Experimental apparatus. 
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Fig.8  Comparison  ofcalculated and 
measured wave height distributions. 
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The present method was proved to have a high accuracy for 
refraction and diffraction of linear water waves. However, in the 
reflective region, direct application of the parabolic equation yields 
a significant error because incident and reflected waves exist in the 
region. The accuracy of the numerical calculation was improved by 
employing a mirror image technique. 
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