
CHAPTER ONE HUNDRED FIFTY TWO 

SOME TECHNIQUES TO CALCULATE DESIGN CURRENTS 
IN SHELF AND STRATIFIED COASTAL WATERS 

Stephen P. Murray* and Myron H. Young** 

I. Introduction 

Increasing use of marine environments for (a) petroleum-related 

structures (both explorational and production), (b) subsea mining (e.g., 

sulfur and salt), (c) brine disposal from onshore salt domes excavated 

for oil storage, and (d) offshore waste disposal has necessitated more 

frequent and more accurate predictions of current speeds and directions 

in coastal and shelf waters. No analytical techniques for such predic- 

tions of wind- and density-driven currents in coastal waters are pre- 

sented at all in the Shore Protection Manual (1973). Wiegel (1964), 

however, does discuss wind-driven currents, but offers no modern method- 

ologies for their application to coastal and ocean engineering problems. 

Simple predictive models as outlined in this paper are especially 

valuable in feasibility studies, where the expense of a field measure- 

ment program is not yet justified. The prediction of oil spill trajec- 

tories is another important application for these procedures. 

Three types of models are discussed in turn, all of which incorporate 

the critically important barrier effect of the coast on the current 

dynamics: (1) a constant eddy viscosity model, (2) an exponentially 

decreasing eddy viscosity model, and (3) a constant eddy viscosity model 

with cross-shore and longshore density gradients. The purpose of this 

paper is to evaluate these three models in terms of their recommended 

engineering usage and point out the important gaps for future research. 

II. The Momentum Equations 

As a first step in understanding the mechanics of the processes that 

drive these nearshore currents, we consider the three-component equa- 

tions of motion with friction parameterized as a horizontally isotropic 

eddy viscosity: 
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f"- = fv - *   / f dz - g JH + f (K &) (la) 
at       p J   3x       dx  dz   „ 2 

n Z 3Z2 

S--£u-pJ  3? d8 " * 8? + 3? (K 7T) (lb) 

o = -I|£+g (1C) 

In these equations u and v are speed components in the x and y direc- 

tions, respectively, z is the vertical coordinate positive down, g is the 

acceleration of gravity, p is pressure, p is water density, r) is the 

coordinate of the free surface positive upward from the mean level, and f 

is the Coriolis parameter. The term du/dt, dv/dt on the left side of 

(la) and (lb), respectively, are the accelerations that result from the 

forces (per unit mass) on the right-hand side of the same equation. 

These forces (from left to right in the equations) represent (a) the 

effect of the rotation of the earth, (b) the baroclinic pressure gradient 

force arising from horizontal density gradients (3p/3x, dp/dy) in the 

water mass, (c) the barotropic pressure gradient force arising from 

water surface slopes On /3x, 3n/3y), and lastly (d) the force of internal 

friction parameterized with an eddy viscosity (K, V, or N). 

In all three models that follow, the flow is considered quasi- 

steady, i.e., 3u/3t = 3v/3t - 0, and locally uniform, such that the 

convective accelerations are also negligible and thus du/dt = dv/dt = 0. 

III. Constant Eddy Viscosity Model with 

Negligible Horizontal Density Gradients 

If the density gradients in the field are such that the baroclinic 

pressure gradient terms can be neglected, then (la, b) can be written 

K^=-gfn-fv, (2a) 
3z 

K^f=-gg+fu, (2b) 
3z      ' 

where the coefficient of mixing of momentum (the eddy viscosity) K has 

been taken as independent of the vertical coordinate z. In shallow 

depths and in waters not strongly stratified in the vertical, this as- 

sumption of a three-dimensionally isotropic eddy viscosity is probably 

not overly restrictive. In this model x is the direction parallel to 

shore, positive to the right looking onshore, and u is the corresponding 
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speed component; y is the direction normal to the shore, positive on- 

shore, and v is the corresponding speed component; z is the vertical 

direction with an origin at mid-depth and positive downward. If the wind 

field is sufficiently uniform along the coast, we may expect no surface 

slopes in that direction, i.e., 3n./3x ^ 0; then, using the complex 

velocity W = u + iv, Eq. (2) may be written 

2 

K -— - fiW = ifG, (3) 
3zZ 

where G = -(g/f) 3r|/3y is independent of z. 

If the presence of the coast is taken into account by setting 

h/2 
J"    vdz = 0 , 

-h/2 

i.e., there is no net transport toward or away from the shore, the 

solution of (3) is 

W = G + A sinh jqz + jC p???* ^Z, (4) JM   J  sinh jX ' 

2 
where X = 1/2 (qh), q = 1/2 (f/K), j = i + 1, A is a complex constant, 

and C and G are real constants. 

The surface boundary condition is the usual quadratic wind stress 

rule: 

\-^[E =-s^2*ia- <» 
s 

The bottom boundary condition is not the usual Ekman "no-slip" condi- 

tion, which tends to considerably underestimate current speeds in shal- 

low water, but rather a quadratic bottom friction rule: 

\ - *[gL —b p R2
 *iY. «> 

b 
where K  and K,    are friction coefficients for air-water and water-sea 

s     b 
bottom, respectively, a is air density, Q is the wind speed blowing at an 

angle a to the shoreline, and R is the current speed making an angle y to 

the shoreline. 

The methodology of computing the current profile in the vertical 

(Murray, 1975) follows: 
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First, the angle y  that the bottom current makes with the shoreline 

is determined as the root of 

D 1/2 a2  K 
(cosh4X - cos4X) siny (^ cosa cosy)    —-— 

s 

+ Q {cosa [sin (y-rr/4) sinh4X - cos(y-Tr/4) sin4X] 

-2 cosy[sin(a- ir/4) sinh 2X cos2X 

- cos(a^ir/4) cosh2X sin2X]} = 0 , (7) 

using the Newton-Raphson technique. 

Then G is determined from 

G = R cosy + {D[cos(y-Tr/4) sinh4X 

+  sin  (y- IT/4)  sin4X] 

-2E[cos(a-w/4)  sinh 2X  cos  2X 

+ sin (a-ir/4) cosh2X sin2X]} 

x (cosh4X - cos4X)_1 , (8) 

where 

1/2 
K acos a\ 

K pcos y 

_ cosy 

„2 

D , (10) cosa   ' 

K, R 

2U   qK 

Morever, C, a wholly real number in (4), is given by 

2 2 
-[K.R sin y-  (a/p) K Q sin a] 

4Kq 

and the complex coefficient A may be written 

(12) 

2K jq cosh jX 

Substituting (8), (12), and (13) in (4) allows the determination of 

vertical profiles of u and v as a function of wind speed and wind 

direction with respect to the coastline, eddy viscosity, total water 

depth, latitude, and surface and bottom friction coefficients.  Note 
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that cosa and cosy must have the same sign, i.e., alongshore components 

of wind and bottom drift are in the same direction. When winds are from 

a direction between TT/2 and 311/2, the sign of Y in (7) must be changed 

accordingly. The only poorly understood variable in this development is 

the eddy viscosity, which we calculated from the expression for a well- 

mixed surface layer (Neumann and Pierson, 1966): 

K = 0.1825 x 10~4 Q5/2 p_1 (14) 

which, for wind speeds Q < 700 cm/sec, is in good agreement with values 

shown in Munk and Anderson (1948). 

The results of the constant eddy viscosity theory are shown compared 

to three field observations from unstratified coastal water in Figures 

1, 2, and 3. The agreement between theory and observation is extremely 

encouraging for the purpose of practical prediction.  Additionally, the 

W = 8 m/sec ,  oc = 300 

Direction, degrees   Q 

4  6   8  10  12 U      16  18  20  22  2<  26 

Speed, cm/sec S 
FIG. 1. Speed and direction of currents observed 
by Saylor (1966) under winds of 8 m/sec at 30° to 
the coastline compared to prediction of constant 
eddy viscosity theory, shown as light lines. Cur- 
rent direction is measured from parallel to shore- 
line, positive onshore. 
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W =    8 m/sec ,   °c =  30" 

Direction , degrees $ 

Speed, cm/sec S 

FIG. 2.  As in Fig. 1. 

constant eddy viscosity model has recently been used by Dr. C. J. Sonu of 

Tek Marine Inc. to predict the trajectory of icebergs on the Pacific 

continental shelf (h ~ 30 m) with quite successful results (Sonu, per- 

sonal communication, 1984). 

An interesting point is the strong dependence of current speed on 

wind direction with respect to the coast.  Figure 4 shows the approxi- 
1/2 

tnately cos   response of current speed to wind angle, a result reported 

earlier by Bretschneider (1967). 

IV. Variable Eddy Viscosity Theory 

In wind-driven current systems the energy driving the current is 

diffusing downward from the surface, and in moderately stratified water 

we expect the eddy viscosity to decrease with distance from the surface. 

Figure 5 shows current speed profiles off the Florida Gulf Coast in 

moderately stratified water. Note the steep decrease of current speed 

with depth, suggesting a depth-dependent eddy viscosity, an idea sup- 

ported by the numerical solutions of equation (2) discussed in Murray 
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W=10 m/sec,    0= 70° 

Direction, degrees 6 
-4-2     0      2      4 

Speed, cm/sec S 

FIG. 3. As in Fig. 1, except for measurements 
on 11 September under winds of 10 m/sec at 73° 
to the coastline. 

(1975).  A practical predictive equation incorporating this effect was 

not presented, however. 

Witten and Thomas (1976) addressed this problem directly with an 

exponentially decreasing eddy viscosity of the formV =\> e , where V 

is the surface eddy viscosity and a is the e-folding length of the eddy 

viscosity. Since X = ah is the ratio of depth to the e-folding length of 

the eddy, as X gets smaller the eddy viscosity tends to be more uniform 

in the vertical. Large values of X indicate a steep decrease of eddy 

viscosity with depth. As seen in Figure 6 at X = 0.1, the surface value 

of the eddy viscosity is decreased only 5% at mid-depth, at X = 0.5 the 

decrease at mid-depth is 20%, and at X =1.0 the decrease at mid-depth is 

40%. In this model y is positive onshore, x is positive to the right 

looking onshore, and z and r| are positive up. The complex horizontal 

momentum equation corresponding to (3) is 

3z [A 3zJ " ifW g 
3n 
3n 

(15) 

where 3/3n = 3/3x + i 3/3y. Witten and Thomas (1976) show that (15) can 
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FIG. 4. The effect of changing wind angle to the coast 
on the alongshore current for three wind speeds (water 
depth = 10 m) from Eq. (4). 

be put into an inhomogeneous form of the modified Bessel equation.  The 

general solution for W then is 

W - C[AT(i1/2S)+BK.(i1/2C)] + iJH 
I 1 cm 

(16) 

where I, and K. are the modified Bessel functions of order one, and A and 
1/2     —Xy/2 2 

B are complex constants, £ = (2a /X) e , a = fh A) is the recipro- 

cal Ekman number, and X = ah is the ratio of depth to e-folding length of 

the viscocity. The surface and bottom boundary conditions allow deter- 

mination of the unknown constants A and B. Using the quadratic wind 

stress surface boundary condition the same as (5), but a "no slip" 

condition at the bottom, i.e., W * 0 at z = -h, the expressions for A and 

B are arrived at 
XT „ T 2(ia)1/i _Xh/2l .  Xi 

A =, 

j__2KlL _  e   j -Xh/2 

2a 
1/2 o[      X   J 3n 

kt^M 2(ia) 1/2 Xh/2 H^hF^'l 
(17a) 

_\T_ 
1/2 xl 

2(iq)1/2 Xh/21 iX -Xh/2 1/2- 

.PFI -13Q B - <2il/2 H x        J ^'i_i zl\Zj^L 
^[u^l^^l ^Kp^hp^! e-/2] 

(17b) 
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FIG. 5. Current speed (S) and direction (6) with re- 
spect to the coast in moderately stratified water off 
the Florida Gulf Coast in the morning (solid dots and 
triangles) and the afternoon (open dots and triangles). 
Wind speeds are 3-4 m/sec. Note the severe kink in the 
afternoon speed profile due to decreased afternoon ver- 
tical mixing resulting from solar heating of the surface 
layer. 

We solved for A and B by using the relationships between the Bessel 

functions and the Kelvin functions (Abramowitz and Stegun, 1972, eq. 

9.9.1, 9.9.2). Using (14) for the near-surface eddy viscosity, the only 

unknown in (17) is the complex surface slope, 3l"|/3n. At this point we 

call on our continuity condition _J° vdz = 0. Our solution procedure is 

to set the longshore slope 3 n/3x = 0, and guess a value for the cross- 

shore slope 3l"|/3y, compute the constants A and B, and then compute the 

velocity profile from (16). Next, test to see if the continuity condi- 

tion / vdz - 0 is satisfied; if it is not. iterate values of the slope 
-n 
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EDDY VISCOSITY RATIO 

.3 .4  .5  .6  .7  .8 .9 1.0 

FIG. 6.  The effect of X on the vertical pro- 
file of the eddy viscosity. 

until the condition is satisfied and accept the values of 3r)/3x, A, B, 

and the velocity profile as the solution. 

Figure 7 gives an example of the solution from the exponential eddy 

viscosity theory with X = 0.1 and 0.3. Speeds are obviously far too low 

due to the no-slip bottom boundary condition. The constant eddy vis- 

cosity solution (4) is also shown for comparison. It gives a correct 

range of speed, but again the speed is too high near the bottom. In 

deeper water, Figures 8 and 9 show the two theories are tending to 

converge. The exponential eddy viscosity model probably gives a better 

representation of vertical current shear, but the actual magnitudes in 

the upper half of the water column are better represented by the constant 

V theory. At this point we recommend the constant eddy viscosity model 

for shallow water (<20 m) predictions and a judicious combination of both 

theories for deeper water applications. 
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FIG. 7. Current speeds predicted by exponential 
decaying eddy viscosity theory compared to con- 
stant eddy viscosity theory. Wind is 10 m/sec at 
45° to coast. 

ALONGSHORE CURRENT SPEED 
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FIG 
45° 

1M^MmsWMWMWW/M/:mS'l 
8.  As in Fig. 7, except wind is 5 m/sec at 

to coast (deep-water example). 

Clearly, the most desirable predictive scheme would incorporate fea- 

tures from both models. We are currently at work on the analytical 

solution for the wind-driven current problem incorporating both a stress 

bottom boundary condition and an exponentially varying eddy viscosity. 
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SPEED ALONGSHORE 

10 20 

FIG. 9. As in Fig. 8, except wind is 10 m/sec at 45° to the coast 
(deep-water example). 

V.  Constant Eddy Viscosity with 

Horizontal Density Gradient 

In many coastal regions, intense rainfall on the local watersheds 

produces high runoff of fresh water to the coast through a multitude of 

river input sources that act somewhat as a line source of fresh water 

along the coast. These freshwater sources typically produce a brackish, 

turbid band of water that frequently moves at high speeds quasi-parallel 

to the coast. These baroclinic coastal boundary currents are known from 

the southeastern coast of the United States (Blanton, 1981), the Louisi- 

ana-Texas Gulf Coast (Lewis, 1979), the Alaskan coast (Schumacher and 

Reed, 1980; Royer, 1979), and the Caribbean coast of Nicaragua (Murray et 

al., 1982). One or two truly major rivers can also produce a baroclinic 

coastal current stream, as in the case of the Louisiana-Texas Gulf Coast, 

cited above, which is the result of the massive discharges from the 

Mississippi and Atchafalaya Rivers. 

The essential difference in the dynamics between this model and the 

two discussed previously is the inclusion of the baroclinic pressure 

gradient term. Equation (la,b) then reduces to 
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0= fv _-±a|p _g|n + Nl!H (18a) 
p 3x °  3x    .2 

3z 

0 = -fu - g I1 + N l-£ (18b) 
3y    3z2 

where in this model we take z positive down, ri the sea surface coordinate 

positive up from the mean level, h the coordinate of the bottom, N the 

eddy viscosity, x(u) positive in the cross-shore direction toward the 

shore, and y(v) positive in the alongshore direction, to the left of an 

observer looking onshore. 

Again defining the complex velocity W = u + iv, (18a, b) can be put 

in the complex form 

^| = a2W - a2   iS{(z+n)I|£+S} (19) 
3z 

2 
where S is the complex slope = 3r|/3x + i (3ri/3y) and a = if/N. 

The solution to (19) is 

W = A exp a(z+ri) + B exp - a(z+r|) 

where A and S are complex constants to be determined by the boundary 

conditions.  The cross-shore volume flux is given by the real part of 

r „ ,   _ A , ah     ,.     B , -ah     ,. J   W dz = - (e       -  1)  - - (e -  1) 

+ |0(Hh+2pS) (21) 

where terms in T| are neglected as usual, as they affect the transport by 

only 0(0.1%). 

The complex constants A and B and the cross-shore slope 3r|/3x are 

considered unknown in (20). Although often considered negligible, the 

solution can also include a longshore baroclinic pressure gradient. 

The surface boundary condition 3W/3z = - T /N, where T is complex, 

determines the first complex constant 

A = B - i&- i£ - -£ (22) A  B  afp 3X  aN 
U2J 
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The bottom stress boundary condition 

N(f}h+Kp lWhl Wh = 0 (23) 

and the continuity equation close the system by allowing computation of 

the constant B and the cross-shore slope 3n/3x. For further details, see 

Murray and Young (1984). 

The vertical current profile u and v can now be solved from (20) 

using observed or estimated values of the wind stress, eddy viscosity, 

water depth, cross-shelf density gradient, and longshore surface slope. 

The model is evaluated by comparing our observations taken off the 

east coast of Nicaragua with the prediction of (20). Figure 10 shows the 

alongshore speed and salinity distribution in the turbid diluted coastal 

current found 20-30 km off the coast in this high-rainfall area (Murray 

et al., 1982). Our measurements of wind stress, water depth, and density 

structure allow us to compute a predicted velocity distribution and 

compare it to our field observations of current velocity. Eddy viscosi- 
2 —8 

ties of N = 6 cm /sec and longshore slopes 3r)/3y = 6 x 10  are also 

estimated from the data.  Pettigrew (1981) reports an eddy viscosity of 
2 <  < 

~10 cm /sec for the east coast of the U.S., so 5 - N - 15 appears to be a 

good range for predictions for other coastal areas displaying similar 

hydrographic conditions. The longshore slope can be set = 0 unless 

knowledge exists to the contrary. 

The distribution of the alongshore velocity component calculated 

from (20) and (21) under the wind stress, density gradients, and eddy 

viscosities associated with the field data presented in Figure 10 is 

given in Figure 11. Although minor details deviate, the agreement be- 

tween theory and observation is extremely encouraging. For example, the 

magnitude and location of the current maxima at -12 km offshore and the 

offshore length scale of 15-20 km are all successfully reproduced. The 

offshore countercurrent of 5-10 cm/sec in both observations and theory 

is apparently the result of the slight longshore surface slope opposing 

the wind. 

The theory assumes a density gradient that is constant with depth, 

and thus predicts significant southerly velocity components throughout 

the water column. In the observations, however, the density gradient 

weakens with depth, leading to some overprediction of the near-bottom 

velocities, but the first-order approximation of the longshore speed 
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FIG. 10. Alongshore current speeds (cm/sec) observed along east 
coast of Nicaragua (solid lines) and coincident salinity distri- 
bution (dashed lines), which delineate the baroclinic coastal 
current. Dots indicate data observation points. Basic southerly 
flow (off page) is bordered by a weak offshore countercurrent. 

Km from coast 

FIG. 11. Prediction of the distribution of alongshore current 
speeds from the theoretical model (20) under the field conditions 
shown in Fig. 10. 
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distribution, the goal of this paper, is clearly a good one. 

VI. Summary 

Three analytical models are presented that can be used to predict 

vertical profiles of coastal and inner-shelf currents when applied with 

careful consideration of the pertinent physical parameters in operation. 

Two of the models are driven solely by wind stress, while the third also 

incorporates density gradient effects. 

An important result suggested by the successful comparison of our 

field data to theory is the possibility that considerable knowledge of 

the nearshore velocity distribution along coasts with simple geometry 

can be obtained, given data on local winds, from routine bathymetric and 

hydrographic (STD) surveys. An immediate application is the prediction 

of current structure for offshore petroleum operations and the trajec- 

tories of oil spill movements along many subtropical coasts as well as 

other high-runoff coasts such as the Pacific coast of Alaska. 
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