
CHAPTER SEVENTY FOUR 

A Finite Element Model  for Wind Wave Diffraction 

Ove  Skovgaard*      Lars  Behrendt**       Ivar G.   Jonsson*** 

Abstract 

The applicability of a hybrid finite element model for the calcula- 
tion of combined diffraction-refraction of small time-harmonic water 
waves is demonstrated. The model is valid for arbitrary water depths and 
wave lengths, i.e. it is based on intermediate depth theory (IDT). The 
model includes arbitrarily varying partial reflection along the bound- 
aries. Superposition of waves (to simulate a spectrum approach) with dif- 
ferent incident directions is demonstrated, and CPU-times and core mem- 
ory requirements are given. 

The model is verified and documented with respect to sensitivity of 
the model parameters in detailed tables, using the classical Homma is- 
land on a parabolic shoal. The wave period is here chosen in such a way 
that a small number of elements (larger than 500 and less than 2,000) is 
enough to get an accurate solution. 

For a new simple, but realistic harbour geometry many detailed and 
accurate graphical results are given. The wave period (T = 9 sec.) is 
here chosen so that it is representative for natural wind waves, and the 
size of the harbour is selected, so that the model gets a fairly large 
number of elements (of the order 10,000). 

1. Introduction 

Small-amplitude time-harmonic waves of arbitrary length propagating 
in an area of varying depth may be described by the mild-slope wave equa- 
tion. This equation was first derived by Berkhoff (1972). He solved the 
mild-slope wave equation by using a finite element method based on 
sources placed along the open boundaries. Chen and Mei (1974) formulated 
a hybrid finite element model (FEM) based on shallow water theory (SWT). 
This model was generalized to intermediate depth theory (IDT) by Houston 
(1981). Houston's hybrid FEM is restricted to full reflection along solid 
boundaries. In Behrendt and Jonsson (1984) a new derivation of the funda- 
mental functional is presented. This new method includes partially ab- 
sorbing boundaries and makes it straightforward also to include bottom 
friction. 

In the present paper the hybrid functional by Behrendt and Jonsson 
(1984) (hereafter denoted by Paper I) is implemented, verified by com- 
parison with exact solutions, and investigated for sensivity of model 
parameters. The computational requirements and many detailed and accu- 
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rate results are illustrated for a new simple but realistic harbour ge- 
ometry. In this harbour we demonstrate that partial reflection can be 
specified arbitrarily varying along solid boundaries (e.g. rubble mound 
breakwaters). This property is crucial for realistic modelling of wind 
wave diffraction in harbours. Another crucial property for practical ap- 
plications is that superposition of waves with different directions and 
periods is computationally feasible. 

2. The Hybrid Finite Element Model and its Implementation 

This hybrid FEM is a combination of a simple finite element approach 
in area A (see Figs. 1 and 2) and a semi-analytical expansion in the 
outer area R (see Figs. 1 and 2), where we assume a constant water depth. 

Constant 
water depth 

Figure 1. Sketch of model in 
the horizontally plane, in- 
finite ocean. 

Figure 2. Sketch of model in 
the horizontally plane, semi- 
infinite ocean. 

Inside the circle or semi-circle 8A the depth contours can be specified 
arbitrarily, but the change in depth over a wave length of the water 
waves has to be moderate. Along the "solid" boundary 3B energy may be ab- 
sorbed by specifying an arbitrarily varying absorption coefficient a 
(0 S a i  1). Thus, a = 1 corresponds to full absorption of waves incident 
at a right angle, and a =  0 corresponds to a fully reflecting boundary. 
The partially absorbing boundary condition is the well-known Eq. (21) in 
Paper I. 

The semi-analytical expansion in the outer area R of constant water 
depth is a solution to the classical Helmholtz wave equation (which is 
the constant water depth version of the mild-slope wave equation, see 
Paper I Eq. (20)) satisfying the Sommerfeld radiation condition (see 
Paper I Eq. (14)) at infinity. For the infinite ocean in Fig. 1 the ex- 
pansion is: 

I H(1)(kr) [a cos(n9) + g sin(n9)] 
„ n       n n 

n=0 
(1) 

where <J> is the velocity potential of the scattered wave field (see Paper 
I Eq. (15)), H^1) is the Hankel function of the first kind of order n, k 
is the wave number, and r and 6 are polar co-ordinates in the horizontal 
plane. The coefficients (% and Bn are determined by matching this sol- 
ution with the solution in area A. 
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For the semi-infinite ocean in Fig. 2 the expansion is the same as 
in Eq. (1) with gn = 0, n = 0, 1, ..., ». Now 6 equals 0° or 180° along 
the infinite, fully reflecting straight coastline in area R. In the model 
the expansions are truncated at n = nmax which is an input parameter to 
the model. The number nmax depends on the desired accuracy of the sol- 
ution and on the maximum distance r from the origo 0. For the classical 
Homma island, see Homma (1950), the necessary number nmax has been 
studied in Appendix I in Skovgaard and Jonsson (1981). 

The basic principle in the present finite element method is the mini- 
mization of a functional FJJ(<|>) , see Eq. (44) in Paper I. This minimiza- 
tion is expressed in Eq. (45) in Paper I. The functional is discretisized 
using finite elements in area A and using the expansion (1) describing 
<ps  along 3A. The finite elements chosen are simple triangular three-node 
elements with linear shape functions. This procedure results in a system 
of complex linear equations with a quadratic banded sparse symmetric co- 
efficient matrix {K}. The maximum semi-bandwidth depends strongly on the 
chosen numbering of the nodes in the finite element grid. In the pioneer- 
ing study by Chen and Mei (1974) the semi-bandwidth was also much depend- 
ent on the number of nodes along 3A, and on 'nmax'. 

3. An Example of Verification and Sensitivity: Homma's Island 

Shoal 

Figure 3. Sketch of an idealized 
island on a parabolic shoal; 
(a) vertical; (b) horizontal. 
ra = 10,000 m, rb = 30,000 m, 
hb = 4,000 m, ha = hb(ra/rb)

2 = 
4,000/9 m. 

Figure 4. Horizontal sketch of 
finite element grid over part of 
the shoal in Fig. 3. The grid 
covers the shoal for 0° £ 9 < 360° 
and r fi r £ r, . 

As an example from the verification program we have considered the 
classical Homma island surrounded by a parabolic shoal in an infinite 
ocean of constant water depth, see Fig. 3, and Jonsson et al. (1976), 
Table 1 and Eq. (1.1). A detail of the finite element grid is shown in 
Fig. 4. 

The boundary 3B is fully reflecting in this example. The boundary 3A 
has been placed along the outer boundary of the shoal, i.e. area A is 
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Table I. 

Calculated non-dimensional wave amplitudes A/A^ and phase angles (p 
for plane time-harmonic (of period T = 480 sec.) incident waves around 
the Homma island in Fig. 3. Dimensionless radius r/ra = 1, 2, 3, and 9. 
6 = 0°, 30°, ..., 180°. The values of phase angle (p are chosen in the 
interval 0°Sip < 360°. For each of the 28 pairs of (r/ra, 8) three re- 
sults are given in a column. The upper number is the exact solution, the 
middle number is the difference with a sign between the exact solution 
and our FEM-solution Nr. I. The lower number is the difference with a 
sign between the exact solution and our FEM-solution Nr. II. The right- 
most column contains for each line a summation of the absolute values of 
the differences mentioned above. 

the area covering the shoal. The geometry is symmetrical and it could be 
modelled by a semi-infinite ocean, but the finite element grid (Fig. 4) 
is not symmetrical, so we have to introduce an infinite ocean model. 

Exact solutions using an orthogonal collocation method and IDT wave 
theory for this,problem have been published in tabular form earlier, see 
Jonsson et al. (1976) and Skovgaard and Jonsson (1981). Here an exact 
solution for a new wave period (T = 480 sec.) is given in Table I. 

In Table I we have compared two finite element solutions (denoted by 
No. I and No. II) with the exact solution. FEM solution No. I is based 
on a very fine grid: A6 = 6°, i.e. 6 = 0°, 6°, ..., 360°, and Ar/ra=0.1 
for 1 £ r/ra £ 2, and Ar/ra =0.2 for 2 S r/ra S 3, nmax = 16 (see Sec- 
tion 2). FEM solution No. II is based on a rather coarse grid: A9 = 10°, 
i.e. 9=0°, 10°, ..., 360°, and Ar/ra = 0.25 for 1 £ r/ra S  3, nmax=11. 
The total number of elements is 1.800 and 576 in models No. I and II re- 
spectively. 

Solution Nr. I was constructed in order to verify our model, i.e. 
verify the hybrid formulation, verify the functional, verify the discre- 
tization, and finally verify the implementation. Here the maximum dis- 
tance (dimensionless with respect to local wave length, La = 31,648 m 
and Ljj = 93,959 m) between neighbouring vertices of the triangular el- 
ements was of the order 0.05 for r/ra = 1 and 0.04 for r/ra = 3, i.e. 
minimum 20 As (see Fig. 4) per local wave length. 

Solution No. II was constructed in order to measure the sensitivity 
of the finite element discretization. Here the maximum distance (dimen- 
sionless with respect to local wave length) between neighbouring vertices 
of the triangular elements was of the order 0.10 for r/ra = 1 and 0.06 
for r/ra = 3, i.e. minimum 10As per wave length near 8B and minimum 16As 
per wave length near 3A. 

Solution No. I has a maximum error in A/A-^ of -0.0324 (corresponding 
to 1.37%) at r/ra = 1 and 9=0° (point Q in Fig. 3, the centrepoint at 
the island in the shadow region). For the 28 results in Table I the mean 
error (1/28 £|error|) is 0.0082, or relative mean error (1/28 I|error]/ 
(A/A£)exact) 0.58%. The rightmost column informs us that the sum of the 
errors along r/ra = 1 equals approximately the sum of the errors along 
the other three semi-circles r/ra = 2, 3, and 9. Note that for all con- 
sidered 28 points there is no distinct pattern of the signs of the errors. 
The maximum error in phases ip is -1.69° and it is found at r/ra = 1 and 
6 = 30° (which is not where the maximum error in A/A-[ was found). The 
mean error in (p (1/28 Z\error]) is 0.54° for the 28 results. 

These results for solution No. I did not change when nmax was in- 
creased. This is in accordance with Skovgaard and Jonsson (1981), Fig. 24, 
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which showed that nmax ;£, 12 was enough for 1 S r/ra S 9. To describe our 
hybrid  finite element solution we present the calculated expansion coef- 
ficients 0Q, an, and (5n for n = 1 , 2, ..., nmax in Table II. First, in 
accordance with the reference mentioned above it was checked that the ex- 
pansion coefficients in the table were in fact invariant to any increase 
in the number 'nmax'. Secondly, note that the largest 3n~coefficient is 
of the order of magnitude 10   (the magnitude of the largest an-coeffi- 
cient is of the order of magnitude 1); this is in agreement with the fact 
that if a symmetrical grid had been used, all the calculated 8n-values 
should have been approximately zero, because for a semi-infinite ocean 
(Fig. 2) they are identically equal to zero. 

Table II 

Calculated expansion coefficients a for n 
16 in Eq. (1). T = 480 sec, FEM-solution No. I. 

On I 
u 

Re Im Re Im 

0 (-0D-1.9036 (-02)-3.7654 
1 +1.5557 (-0D-8.3137 (-15)+3.4083 (-15)-4.4021 
2 (-0D+7.2245 (-0D+3.0857 (-16)+3.4004 (-16)-6.6716 
3 (-03)-2.2846 (-02)+6.7557 (-16)-9.3783 (-16)-6.2251 
4 (-03)-3.7408 (-06)-6.9968 (-16)+4.3754 (-16)+2.0117 
5 (-09)+8.5146 (-04)-1.3050 (-17)+8.6204 (-18)+8.3134 
6 (-06)+2.7177 (-12)+3.6930 (-18)-8.9236 (-l8)+4.3720 
7 (-16)-3.3380 (-08)+2.5711 (-19)-2.9753 (-19)+4.7180 
8 (-10)+2.8321 (-19)-2.6609 (-19)+1.9747 (-20)+9.4608 
9 (-20)-4.9453 (-1D+1.5208 (-20)+1.0105 (-20)+1.9679 

10 (-13)-3.0731 (-2D-2.3659 (-20+1.2234 (-22)+2.9296 
11 (-22)-1.8402 (-15)-4.1857 (-22)-1.6817 (-23)+1.0816 
12 (~17)+4.3363 (-23)-1.3715 (-24)+4.0399 (-23)+1.6757 
13 (-24)-3.5198 (-19)+3.6025 (-24)+3.4282 (-24)+1.5503 
14 (-2D-2.4754 (-26)+1.5796 (-25)+1.7842 (-26)+2.3390 
15 (-26)-1.4705 (-23)-1.4367 (-27)+4.3157 (-27)+4.9126 
16 (-26)+7.0580 (-29)+2.3355 (-28)+7.2292 (-28)+1.6390 

We here ought to mention that the entire implementation was done on 
an IBM 3081 using double precision floating point numbers, which corre- 
sponds to approximately 16 floating point digits. 

Solution No. II has a maximum error in A/A^ of -0.0981 (correspond- 
ing to 4.14%) at r/ra = 1 and 6 = 0° (i.e. same point Q as for solution 
No. I). If we compare with Houston (1981), Figs. 7 and 9, which has a 
similar comparison but for another period (T = 120 sec), it is seen that 
the largest error is found on the 'illuminated' side of the island 
(around point P in Fig. 3). From this we can draw the conclusion that 
the location of the largest error is very much dependent on the wave 
period. For the 28 results in Table I the mean error for A/A^ is 0.0223, 
or relative mean error 1.63% (which is about three times larger values 
than what was found for solution No. I). The rightmost column informs us 
that also for this solution (No. II) the sum of the errors along r/r = 1 
equals approximately the sum of the errors along the other three semi- 
circles r/ra = 2, 3, and 9. Note that for all considered 28 points the 
signs of the errors in solutions No. I and II are the same, and the mag- 
nitude is roughly a factor three larger in case II than in case I. 
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The maximum error on the phases in solution No. II is -5.28° and it 
is found in the same point as the maximum phase error in solution No. I. 
The mean error in ip in solution No. II is 1.55° for the 28 results pre- 
sented. Again this mean error is approximately about three times larger 
than the corresponding mean error for solution No. I. A calculation simi- 
lar to case No. II with the same finite element grid but nmax increased 
from 11 to 20 was performed. Over the shoal there was no change in the 
solution for the five digits shown in Table I. However, for r/ra = 9 mi- 
nor changes in the errors were noticed, but these modifications were so 
small that the mean errors in A/A^ and ip given above did not change. 
Again, this is in agreement with Skovgaard and Jonsson (1981), where it 
was shown that for r/ra = 9,nmax = 11 is just about too small to yield 
five digits of accuracy. 

A contour plot of the A/A^ solution in model No. I is shown in Fig. 5. 
A three-dimensional plot of an instantaneous surface elevation around 
the island is shown in Fig. 6. 

Figure 5. Contours for the rela- 
tive amplitude around the Homma 
island, T = 480 sec. The interval 
between A/Aj-curves is 0.25. 

Figure 6. Relative surface elev- 
ation around the Homma island, 
T = 480 sec. 

Finally, we stress that in this section we have investigated a rather 
difficult bottom geometry giving rise to combined shoaling, refraction, 
and diffraction in an infinite ocean model. 

4. An Example of Absorption and Superposition: Rectangular Harbour 

In this section we will demonstrate the effect of energy absorption 
along boundaries, the effect of obliquely incident waves, and finally 
the effect of superposition of incident waves of different angles and 
amplitudes. The presentation will be restricted to the simple harbour 
geometry shown in Fig. 7, left. 

In Section 3 we considered an example of an infinite ocean (Fig. 1). 
Here we consider an example of a semi-infinite ocean (Fig. 2). The lay- 
out of the finite element grid and the location of the boundary 8A be- 
tween the finite element area A and the outer region R is given in Fig. 
7, right. In Fig. 8 an enlarged sketch of the finite element grid around 
the tip of one of the breakwaters is shown. 
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Figure 7. Left: Sketch of harbour geometry. Constant water depth in- and 
outside the harbour. Right: Sketch of finite element grid and boundary 
8A between finite element area A and semi-infinite ocean R. 

\    \ 
\            \           \ 

(01 

)0f         \ 

\       \ \       \ 
S 

\            N 

\ \ 
|K3! 

K}T 
|K2I 

Figure 8. Detail of finite element 
grid around breakwater. 

Figure 9. The coefficient matrix 
{K} and its three submatrices 
{K^}, {K2}, and {K3}. 

The total number of nodal points in the finite element grid is 5,445 
and the total number of elements is 10,556. Along the left and right 
boundaries inside the harbour there are 83 element sides, i.e. the short 
and long sides are 6.26 m and 9.02 m respectively. Along the innermost 
boundary of the harbour there are 60 element sides, i.e. the short and 
long sides are 6.50 m and 9.02 m respectively. In all the following fig- 
ures a representative short wave period of T = 9 sec. has been used cor- 
responding to a wave length in the entire area (constant water depth in 
the whole area for simplicity) of L = 95.57 m. This corresponds to a ra- 
tio of maximum side length in the elements to wave length of 9.02/95.57= 
0.0944 or minimum 10.6 element sides per wave length. This resolution is 
representative of what a practical engineer would use. Referring to the 
previous section one would expect a relative mean error in A/A^ and (p of 
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the magnitude 1-2% and 1°-2° respectively. All figures were first cal- 
culated using nmax = 20. Hereafter all calculations were repeated with 
nmax = 24 (i.e. an increase of 4). No change could be detected in any 
figure. 

The nodal points were numbered starting at the left-hand corner and 
going right on the innermost boundary of the harbour, i.e. the numbering 
was done along lines parallel to the x-axis (see Fig. 7, left). This 
principle has been used in the entire grid, also in the minor part of 
area A outside the entrance of the harbour. This was done to minimize 
the bandwidth in the coefficient matrix {K^}, which is by far the largest 
of the coefficient matrix {K}, see Fig. 9. 

The submatrix {K^} is stored in packed form giving it the dimensions: 
the number of nodal points (5,445) times the largest difference in nodal 
point numbers found in any element plus 1 (here 62 + 1 = 63), i.e. 
5,445 x 63 = 343,035 complex numbers. The quadratic submatrix {K2} has 
the side length equal to the number of expansion coefficients, i.e. 
nmax +1 (=21), i.e. 21 * 21 = 441 complex numbers in the full matrix. 

The submatrix {K3} has the dimensions of the largest difference in 
nodal point numbers of the nodes on 8A (here equal to 283) times nmax+ 1 
(= 21), i.e. 283 x 21 = 5943 complex numbers. 

The programming was done using the IBM OS PL/I Optimizing Compiler, 
release 4.0, see IBM (1981a) and IBM (1981b). All the programming was 
done in double precision, which with our machines is approximately 16 
digits (8 bytes per real number and 16 bytes per complex number). The 
program was compiled and executed with VM/CMS on an IBM 3033 and with 
MVS/TSO on an IBM 3081 (16 M bytes of core memory on each machine). The 
CPU-times given below are from executions on the IBM 3081, which is a 
dual-processor machine. In the timings only one processor was used. 

After testing, all debugging facilities were removed from the code 
and all programs were recompiled with the REORDER and OPTIMIZE(TIME) op- 
tions. In the execution of this relatively modest harbour the whole code 
could reside in core memory during execution. For one single period (no 
superposition) the execution time was approximately 140 CPU-seconds (i.e. 
2V3 min.) and the memory size 6 M bytes. Houston (1981) reported for a 
model of the same size (10,560 elements) an execution time of less than 
1min. onaCRAY-1. He used single precision in his FORTRAN program, which 
is approximately 15 floating point digits on a CRAY-1. When the CRAY-1 
vector-computer is being used as a scalar computer, it is approximately 
4-5 times as fast as a single processor of the scalar IBM 3081 computer. 
So we can conclude that our implementation is at least twice as fast as 
Houston's implementation. Note that the two implementations use approxi- 
mately the same number of digits in the floating point calculations, viz. 
16 and 15. 

In Paper I, Figs. 3 and 4, an example of contours of relative ampli- 
tude and three-dimensional surface elevation at a specific time has been 
given in the case of normal incidence (in Fig. 7, left, 61 = 270°) and 
all boundaries being fully reflecting. To further illustrate these two 
figures we here show the relative wave amplitudes in three cross-sections 
parallel to the y-axis (see Fig. 7) in Fig. 10 and three cross-sections 
parallel to the x-axis in Fig. 11. 

The first example is rather academic due to all boundaries being ful- 
ly reflecting. In the following examples partial reflection is included 
in accordance with the a-values in Fig. 7, left. To be very precise, the 
a-value of 0.5 was used along the inner side of the breakwaters, around 
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Figure 10. Relative wave ampli- 
tudes A/A^ for T = 9 sec. in 
three cross-sections: 
x = -195 m, 0 m, +195 m. 
All boundaries are fully re- 
flecting, i.e. a = 0 every- 
where. 9i = 270°. 

Figure 11. Relative wave ampli- 
tudes A/A^ for T = 9 sec. in 
three cross-sections: 
y = -532.53 m, -269.40 m, -12.53 m. 
All boundaries are fully re- 
flecting, i.e. a = 0 every- 
where. 9i = 270°. 

the tip of the breakwaters, and on that part of the outer side of the 
breakwaters that is inside area A. 

In Figs. 12, 13, and 14 the results are shown for 81 = 270° with the 
absorbing boundary conditions. 

Figure 12. Harbour, contours of 
relative amplitudes A/A^. T = 

= 270°. Partial ab- 

Figure 15. Same as Fig. 12, ex- 
cept that ei = 247.5°. 

9 sec. 
sorption as defined in Fig. 
left. 

7, 
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Figure 13. Same as Fig. 10, 
except for partial absorption 
as defined in Fig. 7, left. 

Figure 14. Same as Fig. 11, 
except for partial absorption 
as defined in Fig. 7, left. 

In Figs. 15, 16, 17, 18, and 19 the results are shown for 
with absorbing boundary conditions. 
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Figure 16 
except that 

Same as Fig. 13, 
1 = 247.5°. 

Figure 17. Same as Fig. 14, 
except that 6* = 247.5°. 

In Figs. 18 and 19 the results are shown for superposition of three 
different angles of incidence (9* = 225.0°, 247.5°, and 270.0°) with 
A/Ai = 1/*^> v/2/r3> \lJb  respectively (i.e. k/k^  » 0.41, 0.82, and 0.41). 
Note that ECA/A^)2 = 1 for the three incident wave systems. 
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Figure 18. Harbour, contours of relative amplitudes A/A^. Superposition 
of three incident wave systems, 9* = 225.0°, 247.5°, and 270.0°. T = 
9 sec. Partial absorption as defined in Fig. 7, left. 

Figure 19. Harbour, relative surface elevation at a specific time corre- 
sponding to the example in Fig. 18. 

5. Discussion and Conclusion for the Harbour Example 

The first set of figures (Figs. 10, 11 and Figs. 12, 13, and 14) de- 
monstrated in detail the effect of full reflection vs. partial absorp- 
tion. 

The next set of figures (Figs. 12, 13, and 14 and Figs. 15, 16, and 
17) demonstrated in detail the effect of normal incidence vs. oblique 
incidence (same partial absorption in both cases). 

The final set of figures (Figs. 15, 16, and 17 and Figs. 18 and 19) 
demonstrated in detail the effect of one direction of incidence with all 
the wave energy vs. the same amount of energy spread over three direc- 
tions of incidence. The dominant direction in the superposed wave fields 
is the same as in Figs. 15, 16, and 17. 
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We notice that in the cases with normal wave incidence (91 = 270°) 
there is full symmetry, which is illustrated by Figs. 10- 14. 

The conclusions which can be drawn from all the sets of figures are 
not surprising: partial absorption diminishes the wave amplitudes dras- 
tically; the distribution of the same total wave energy among several 
directions has some diminishing effect on the wave amplitudes. 

The execution time for calculating the wave field for a single period 
was earlier given to be 2/3 min. The code is still a research code, and 
if, in the future, consulting engineers are going to superpose many di- 
rections and many periods for each lay-out of the harbour geometry a 
more optimized code has to be developed. 

A more promising alternative to decrease the execution time would be 
to develop and implement the model on a vector-processor like CRAY-X-MP, 
CYBER 205, NEC SX-2, FUJITSU VP-200, or HITACHI S-810. The first three 
machines are strictly FORTRAN-machines, but the last two have IBM-compat- 
ible sets of machine instructions and should therefore be able to run 
IBM PL/I, which has vector operations built into the language itself. 
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