
CHAPTER SIXTY FOUR 

The Physical Basis  of The Mild-Slope Wave Equation 

Lars Behrendt* Ivar G.   Jonsson** 

Abstract. 

The mild-slope wave equation is derived "by demanding minimum in 
total wave energy. 

By demanding conservation of wave energy, two different functionals 
for the finite element solution of the mild-slope wave equation are 
constructed. The first functional is based on a finite/infinite element 
formulation, and the second one is "based on a hybrid finite element 
formulation. Both functionals are constructed in a straight-forward way 
that leads to a better physical understanding of the functionals and a 
full understanding of each separate part of them. 

1. Introduction. 

Waves of arbitrary length propagating in an area of varying depth 
may be described by the mild-slope wave equation. This equation was 
first derived by Berkhoff (1972). Later an alternative derivation was 
given by Smith and Sprinks (1975). A detailed discussion can be found 
in Jonsson and Brink-Kjaer (1973). 

Berkhoff (1972) solved the mild-slope wave equation by using the 
finite element method. Chen and Mei (197*0 formulated a hybrid finite 
element method that, contrary to Berkhoff's formulation, leads to a 
symmetric stiffness matrix, which is almost a necessity when dealing 
with larger element grids. Their formulation has later been used in a 
generalized version by Houston (1981) and Tsay and Liu (1983). 

Bettes and Zienkiewicz (1977) solved the mild-slope wave equation 
by using a simple finite/infinite element method based on a variational 
formulation different from the one used by Chen and Mei (197*0 . 

In this paper is given a derivation of the mild-slope wave equation 
based on energy considerations. Then it is demonstrated how — by 
generalizing the approach used to derive the wave equation — one can 
construct the functionals used in both the hybrid element and in the 
finite/infinite element methods when solving the wave equation. General 
intermediate depth theory will be used, and energy dissipation along an 
absorbing boundary is included. 

*M.Sc, Postgraduate Student, **Ph.D., Associate Professor, Institute 
of Hydrodynamics and Hydraulic Engineering (ISYA), Technical University 
of Denmark, Bldg. 115, DK-2800 Lyngby, Denmark. 
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2.   Basic Theory. 

When the fluid is assumed to be ideal, it is possible to describe 
the motion of small amplitude surface gravity waves by the complex 
velocity potential $ : 

*/     j. \  A -ioit coshk(z+h) ,,\ 
• U.y.z.t) = 4> e      coShkh (D 

where x and y are horizontal co-ordinates, z is the vertical co-ordina-7 
te, t is the time, h is the local water depth, U) is the angular fre- 
quency and k is the wave number. Quantity <f>=<t>(x,y) is a two-dimensional 
complex potential function. 

The complex wave amplitude r\  is : 

n=f+ (2) 

and the instantaneous complex surface elevation 5 is : 

5 = n e'ia,t (3) 

When one deals with a complex potential, a complex wave amplitude and a 
complex surface elevation, it is only natural also to introduce complex 
energies. 

The complex potential energy of the wave motion per horizontal unit 
area is defined by : 

E =  pgz dz (it) 
P  J0 

and after .some  calculations  one  finds   : 

_ P    -2icot   i,,2,2 ,_•, 
P g 

The complex kinetic energy per horizontal unit area is defined by : 

r°   _   ? 
\  = J lp(V33>r  dz (6) 

V3 being the three-dimensional gradient operator. After some calcula- 
tions this can be written as : 
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S. e 
2iut  i[cco.(V4>)2+i(1-G)Lo24>S3 (7) 

&      g g 

c being the phase velocity, c the group velocity and V the horizontal 
gradient operator. 

The total complex wave energy of the wave motion per unit area is 
the sum of the potential energy (5) and the kinetic energy (7) : 

2 
E=£e-2io,t ,[cc (7(j))2_ fgl ^2j (8) 

The complex energy flux through a section characterized by normal n 
is per unit length : 

r° + 
E =   p u dz (9) 

J-h 

+ . 
where p is the excess pressure : 

P = - P -KT (10) 

and u is the horizontal particle velocity in the n-direction : 

u=3n" (11) 

Inserting (10) and (11) in (9) and integrating one finds : 

p    -2itot ,   3<f> ,„   . 
K_ = -^ e id) cc  <j> -f- (12) 
f      g g     3n 

It is noted that the energies (5), (7) and (8) and the energy flux 
(12) are all functions of time t. When dealing with the corresponding 
quantities in ordinary, real-value wave theory one uses the mean value 
over one wave period. When one deals with a complex energy and energy 
flux this has no meaning, since these mean values will all be zero. 
However, after some simple calculations one easily realizes that the 
absolut values of the complex energies are equal to twice the value of 
the corresponding real quantities. The same result is found for the 
energy flux. 
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3.   The Wave Equation. 

An area of calculation,  A,   is  shown in Fig.   1. 

/ ^VB \ 

\        «* i 
\ / 
\ / 

Tig. 1. Area of calculation A in the horizontal plane. 

Inside area A some wave scattering structure, area B, is located. 
The water depth in area A may vary. For simplicity it is assumed in 
this chapter that the boundary of area B, 3B, is fully reflecting 
leading to the boundary condition : 

|^- = 0   along 3B (13) 
<taB 

It is also assumed that the outer boundary of area A, 3A, is lying at 
infinity. Far away from the central part of area A, the Sommerfeld 
radiation condition must be fulfilled : 

lim    /r~"(^- - ik)<|>S = 0 (TU) r->+c</       gr 

S S 
where <j> is the velocity potential of the scattered wave field. <f> may 
be found from the total potential §  by the expression : 

* = ^  + <f>S (15) 



MILD-SLOPE WAVE EQUATION 945 

where <f> is the known velocity potential of the incident wave motion. 
What (lit) says is in fact that the scattered wave system should be out- 
going at some distance from the central part of area A. 

The total complex wave energy in area A, E , can be found from (8): 

2 

E   £ e-2io* ff i[cc mf_  f&L. .j,2] dx dy (16) 
A  g       JJA   g       c 

Since the wave motion by definition is stationary E must also be 
stationary. This means that the first variation of E must vanish, i.e. 

6EA =0 (17) 

Using Green's theorem one finds from (16) : 

fiE.   = £ e"2ia)t 
2 

c u 
|   -   [<5<j>  [V-(ec 7*)+ -&— <t>]  dx dy 

+ [  cc S<|>|*-d8 } (18) 
J8A+8B

g 3nA   J 

The line-integral in (18) along SB vanishes by. introducing (13). It can 
be argued that also the integral along 3A can be ignored. Hereafter by 
combining (17) and (18) one gets : 

I! 
2 

c   OJ 

[V-(GC Vc|>)  + -S— <t>]  dx dy = 0 (19) 
A S C 

This must hold for any 6"<J>. Therefore the term in the square brackets 
must be zero everywhere in area A : 

2 
e a) 

V-(cc 7<j>) + -&— <(> = 0 (20) 

This is the mild-slope wave equation. 
So, for the total complex wave energy in the area of calculation to 

be stationary the mild-slope wave equation is the necessary and suffi- 
cient demand . 

However, from physical reasoning one can tell that for a known 
incident wave system there will be no stationary situation except 
the one that represents the minimum in wave energy. Therefore, the 
mild-slope wave equation is also a consequence of the total wave energy 
in the area of calculation being minimized. 
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h.   Two Functionals. 

U.1. General Remarks. 

For many practical purposes it is convenient not to deal with an 
area of infinite extension as that shown in Fig.1., hut instead to 
split the horizontal plane in an inner area A, and an outer area R 
reaching to infinity as shown in Fig.2. Thus, it is possible to treat 
the inner and the outer area in separate ways as will be done in the 
following sections. 

Fig.2. Areas of calculation A and R in the horizontal plane. 

Again, inside area A some wave scattering structure B is located. 
For generality, the boundary of this area, 3B, may be partially absor- 
bing : 

3j> 
+ ika<(> = 0 along 3B (21) 

where a  is an absorption coefficient. For waves incident at a right 
angle to the boundary, (21) results in reflected waves with the reflec- 
tion coefficient (l-a)/(1+a).'Thus, a=1 corresponds to full absorption 
of waves incident at a right angle, and a=0 corresponds to a fully 
reflecting boundary. 

Over the boundary 3A which now is not at infinity, the velocity 
potential has to be smooth which leads to the boundary conditions : 

along 3A (22) 



rR     _    _A 
3nA    "     3nA 
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along    A (23) 

where §    and $    are the potentials in area A and R respectively. 
A     R 

In the outer area R the velocity potential can he expressed as : 

<t>R = f  + <t>S (21+) 

S 
where again <(> must satisfy the radiation condition (1U) leading to the 
vanishing of <(> and its derivative at the boundary of area R, 3R. 

k.2.  A Simple Element Formulation. 

A simple element formulation is here understood as a formulation 
that only involves element shape functions to describe the solution to 
the problem. The mild-slope wave equation has been solved by use of 
such a method by Bettes and Zienkiewicz (1977) where infinite elements 
were used in the outer area R, and ordinary finite elements were used 
in the inner area A. Hereby Bettes and Zienkiewicz were able to extend 
the integration to cover the entire x-y plane. 

Using the results from section 2 and 3 will now demonstrate how one 
in a new and easily understandable way can construct the functional 
used by Bettes and Zienkiewicz (1977) in their finite/infinite element 
formulation. 

The total complex wave energy in area A is given by (16). In a qui- 
te similar way the total energy in area R, E , may be found. Energy is 
lost along the partially absorbing boundary  3B. This is described by 
an energy flux through the boundary. Hereby the following equation 
describing conservation of total complex wave energy arises : 

it (W + Kds + Kds = ° &) 
J dB J 9R 

where EV is positive as a flux out through the boundary 3B meaning the 
direction n in (12) should be n. (=-n ). E is positive as a flux out 
through the distant boundary 3R, i.e. n should be n . 

Integrating (25) once with respect to time t yields : 

EA 
+ E

R +   |     tj *£ at]  ds  +   J     [j E^ dt]   ds  =  Constant (26) 

Using   (12)  and  (21)  the  integral along  3B in  (26)  can be  calculated   : 

[     tf E* dt]  ds  = - •£ e"2ia)t   f  Jiacoc  <j>2 ds (27) 
J3B J     f S J3B § 
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Using  (12)  and  (2U)  the  integral along  3R in  (26)  can "be written as   : 

[    E„ dt]  ds = - -t e i   \   cc  59   --*-   ds 

J   1 .S 3$f ,   f   i.i 3<(>S n +  cc 29 TT
1
— ds +  cc 59 -rf—  ds 

JaR S   3nR     J3R S   3"R 

+ f cc if3 |^ ds 1 (28) 
J3R g   3nR   J 

As in (18) it can be argued that these integrals along 3R can be igno- 
red. 

Introducing {2h)  in the expression for E_ one gets : 
K 

2 
c to 

ER = 
§ e~2iWt  { {}  Hoc^f - -*- (91)2]  dx dy 

R 2 

+   ff  Hcc   (Vf3)2 - ^- (9S)2]  dx dy 
J J-D O C 

.      cu2 

+ ff  [cc W1-^8 - -S— (J,1^] dx dyj (29) 

The first integral in £29) is stationary, and it can therefore be dis- 
carded. The second integral contains the velocity potential 9 of the 
scattered wave field which is to be modelled by special shape functions 
in the outer area R. The third integral in (29) may be rewritten as 
follows : 

JJ. 
2 

- i   S  C
K

a)  iS 
[cc V<J) 'V<() *— 9 9 ] dx dy = 

'R  s c 2 

f cc 9S I4- ds - ff 9S[ec V%1  + -S— o)1] dx dy (30) 
J  6  8n     JJR    g       c 
3R+3A   K      K 

Again the line integral in (30) along 3R can be discarded. Furthermore 
assuming the water depth in the outer area R to be constant, the second 
integral on the right hand side of (30) vanishes, since <[> naturally 
must be a solution to the wave equation. 

Hereafter the integrated energy equation (26), with (16), (27) and 
(29) introduced, gives the functional (omitting the unimportant factor 
p -2i<ut % 

~Z e '   '• 
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2 c a) 
F(<!>)  =   ffiCcc   (V<J>)2 - -S— <J>2]  dx dy 

JJA      g c 

+ JJj[ccgW8)2 - ^ 
2 

(<t>S)2]  dx dy 
JR 

A,S ML ^ cc  6    7T— ds 
8A S       3nA 

icttoc  <J) ds = Constant (31) 

-J 
J3B 

By taking the first variation of (31) it is found that : 

6F(9) = 0 (32) 

F((j>) is exactly the functional used "by Bettes and Zienkiewicz 
(1977). By finite/infinite element discretization (32) can be expressed 
as a system of linear equations, which easily can he constructed and 
solved on a computer. When solving (32) one finds the function 9 — or, 
more precisely, a close approximation to the true 9-function — which 
with the preconditions introduced fulfils the energy conservation 
equation (25). So, from a physical point of view, what really happens 
in this finite/infinite element formulation is that the conservation of 
total complex wave energy in the entire plane is ensured. 

U.3. A Hybrid Element Formulation. 

A hybrid element method is a combination of a conventional element 
method and some other method. The mild-slope wasre equation was initi- 
ally solved by Berkhoff (1972,1975) using a hybrid element method. A 
sligtly different hybrid element formulation was introduced by Chen and 
Mei (197*0 solving the shallow water wave equation. Later this formula- 
tion in its intermediate depth version has been used by Houston (1981) 
and by Tsay and Liu (1983). The basic principle of the Chen and Mei 
method is that while the inner area A (see Fig.2.) is divided into 
finite elements, a semi-analytical solution to the mild-slope wave 
equation is used in the outer area R to represent the velocity poten- 
tial 9 . Hereby integration over the outer area R can be avoided. 

Using the same new procedure as in the previous section, a func- 
tional for the hybrid element formulation as originally given for 
shallow water by Chen and Mei (197*0 will now be constructed. However, 
as in the previous section, intermediate depth theory will be used, and 
an absorbing boundary condition will be included. 

Conservation of total complex wave energy is again the starting 
point. However, since the two areas of calculation are going to be 
treated in two separate ways, it is necessary to describe the conser- 
vation of energy in two separate equations. This leads to the following 
energy conservation equation for the inner area A : 
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3E f 

^ + khT = ° C33) 

and for the outer area B : 

3ER   f R 

'3A?3B 

A     R 
E and E are energy fluxes positive out of areas A and R, respectively. 
From (33; and (3*0 one gets by integration : 

E
ZJ 

+ I   [  E^ at ] ds = Constant (35) 
J 3A+3BJ  1 

ED +    [  E? dt ] ds = Constant (36) 
R  J3A+3RJ f' 

The integral in (35) along the partially absorbing boundary 3B can be 
calculated according to (27). The integral in (35) along 3A can be 
calculated : 

}t}E^dt]ds = -fe-
2i^|kcA^ds (3T) 

J 3AJ t g      J 3A g A dnA 

Using Green's theorem one may write the wave energy in the outer area, 

2 

ER, as 

ER = f e~2it0t HfjV^VV + -V- V dx dy 

r 3*R    "i 
+    *ccA^rds (38) 

-1 3A+3R S R  3nR      J 

Now, introducing the precondition that <l> must fulfil the mild-slope 
wave equation (20), it is seen from (38) that E_ may be written as : 

n 

= j> e-2i<* r f j ^ ds + r j      i |£ ds j (   } 
R       g \ J3A    gR   3nR j3R    g       3nR J 

S where  again  integrals  along  3R containing <j>    or  its  derivative have 
been discarded. 
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When in addition assuming the water depth in the outer area R to be 
constant, it can be shown that : 

f   A
S
 Jil ,,    f   ,i 3<t>S .-, cc p •^r- ds =  cc © if— ds 

J»A S  3nR    Jaa S  8nR ' 3A s  ""R     J
3A 

S
  "nR 

The integral along 3A+3R in (36) can be calculated : 

(UO) 

f  [ f £  dt ] ds = - ^ e-2iUt { f ice ?S f^ ds 

+ f  lec cf.1 |^L ds + f cc cf.1 |i- ds j       (1*1) 
J3A+3R

S  3nR     J3AS  3nR   > 

where (1*0) has been used and some integrals along 3R again have been 
discarded. 

By use of (27) and (37) to (1*1), energy equation (35) may now be 
written as : 

2 
p    -2ia)t   f   ff   , r       m,   \2       °Rhl     .2,   ,     . 
8 I  JJA

5[CCg(VV     "      c      V   dxdy 

r 3<t>A (• 2        1 
sec  <k. -r— ds  -       jiaojc  <j>    ds   > = Constant (1*2) 

and energy equation (36) may be written as : 

'3A 6 " U"R     J 3A s  "nR 
£»-2: iwt; r,    ,  ^ .    f,   ,s M! , <   sec tf> TT— ds -  sec <J> -;f—  ds 

I hi    STR 3nn     L. g"    3nR 

sec <j> -r^~ ds -  cc <J> 17"— ds f = Constant (1*3) 
J3A S   %     J3AS   3nR   J 

Now it is time to include the matching boundary conditions along 
3A, (22) and (23). This is done by using (22) in the first integral in 
(1*3) and (23) in the second integral in (1*2). The reason for this 
choice is that when it comes to actual calculations, <j> will be repre- 
sented by finite element shape functions, and therefore the derivative 
of <j). will in general only be an approximation to the true one and 
should therefore be avoided. On the other hand, <|> will be represented 

•fey an analytical series solution containing some Unknown constants. The 
derivative of d)_ will therefore be known exactly. 

It is noted that the third integral in (1*3) only contains $    and 
its derivative. Thus, it is stationary and therefore unimportant. 

How, by adding the two expressions (1*2) and C+3), omitting the 
unimportant factor (p/g)exp(-2iut) and taking advantage of the unimpor- 
tance of the stationary integral, one gets the 'hybrid functional' : 
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2 
C   01 ff ? CCT P 

FH(<j>)   = Jj   Hccg(V<|)Ar - -^~ <f>p   dx dy 

+  I  co  [i«T-(4. -*"1)] ^ds I3A g A dnA 

J3A 

Jap 

2CC    Q      TT^—   dS 

3A    S       3nA 

iaoic <j>    ds = Constant (M) 
3B g 

Similarly to   (32)  one  finds "by taking the  first variation of  C+U)   : 

<SFH(cj>)  = 0 (U5) 

F is the functional first derived in its shallow water version by 
Chen and Mei (197^). The present formulation is more general since 
intermediate depth theory has been used, and an absorbing boundary con- 
dition has been included.  Again it can be concluded that the basic 
demand expressed in (lt5) used in finite element calculations simply 
ensures conservation of total complex wave energy in the entire hori- 
zontal plane. 

Discussion. 

Two different functionals, each corresponding to its own element 
formulation, have been derived. When constructing the functional in 
section It. 2, constant water depth was assumed in the outer area. When 
constructing the functional in section It. 3, it was necessary to assume 
that <j> fulfil the wave equation in the constant water depth outer 
area. When making the actual calculations, this is ensured by represen- 
ting <j> by a semi-analytical solution to the Helmholtz equation. This 
equation is the constant water depth version of the mild-slope wave 
equation. For practical use the two formulations have the same assump- 
tions behind the functionals. The variational formulation described in 
section It.3 is more complicated than the one in section k.2,  but that 
argument should not be used to downgrade the hybrid element method 
since this formulation only has to be gone through once. The authors of 
the present paper believe that when using efficient programming, i.e. 
mainly sparse-matrix handling techniques, there will be no significant 
difference in the cost of running the two models. 

Finally an example of the results of diffraction calculations that 
one can get using the finite element method is shown in Fig.3 and 
Fig.lt. Fig.3 shows the relative wave amplitude in and just outside a 
harbour. The incomming waves are approaching the coastline at a right 
angle and all boundaries are fully reflecting. Fig.lt shows the instan- 
taneous surface elevetion at a chosen time where the sum of the inci- 
dent and the reflected waves has zero elevation everywhere outside the 
harbour. Therefore, what is seen outside the harbour at this moment is 
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alone the surface elevation of the scattered wave field. 
More results including absorbing boundary conditions and superposi- 

tion of waves can be found in SJtovgaard et. al. (1981+). 

Fig.3. Harbour, relative amplitudes. 

Fig.h. Harbour, relative surface elevation at a chosen time. 
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6. Conclusion. 

The mild-slope wave equation has been derived by demanding minimum 
of total wave energy in the area of interest. This approach provides a 
new physical understanding of the mild-slope wave equation. 

A functional for a simple element method and a functional for a 
hybrid element method have been derived from a general energy conser- 
vation principle. In both cases the procedure is straight-forward, and 
there is no need for any trial-and-error methods. Hereby a full under- 
standing of each single part of the functionals is obtained and also a 
better understanding of the physical basis of the finite element method 
for the calculation of diffraction of small water waves. 
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