
CHAPTER FORTY SIX 

SWASH   ON   A   NATURAL   BEACH 

Masaru Mizuguchi 

Abstract 
A field measurement was conducted in order to clarify the swash 

motion on a natural beach. It is found on this particular beach, which 
had a rather steep foreshore slope, that cross spectra calculated bet- 
ween the surface elevations, onshore velocities and the swash agree very 
well with those given by linear long two-dimensional standing wave 
theory in the lower frequency region than a certain value. This find- 
ing together with the observed f~ (f; frequency) high frequency satura- 
tion in swash spectra encourages a partial reflection model to describe 
the fluid motion in the inner surf zone, including the swash. The 
model developed shows a good agreement with the observed results, in 
which being employed an analogy to regular waves for the criticality of 
wave reflection. This model makes it possible to predict the swash 
spectrum for a given incident wave spectra and a given beach profile, as 
far as wave breaking takes place on a foreshore slope. 

1  INTRODUCTION 

The boundary zone between the land and the sea provides interesting 
wave phenomena known as wave run-up. It is this zone where the inci- 
dent waves show the swash motion which includes both the up-rush and the 
down-rush. Wave set-up due to wave breaking outside the swash zone 
contributes only to the mean water level change and the position of the 
mean swash motion, namely the shoreline. 

The understanding of the wave dynamics in the swash zone on a 
natural beach is important in order to give a reasonable boundary condi- 
tion at the shoreline when one tries to simulate the two- or three- 
dimensional beach transformation due to waves. Conventional assumption 
that the wave height is linearly proportional to the water depth gives 
zero wave height at the shoreline, resulting neither wave motion nor 
sand movement. This is clearly not what we observe in the field or in 
the laboratory, although one can imagine an extreme case where the wave 
energy would be completely dissipated before it arrives the swash zone 
on a very gentle beach. 

On the other hand recent field observations reveal that the long 
period fluctuation may prevail among the fluid motion in the surf zone, 
especially near the shoreline (Guza & Thornton, 1982; Mizuguchi, 1982b). 
The long period motion is supposed to be a standing wave in the on- 
offshore direction, no matter if it is a two-dimensional one or a three- 
dimensional one like an edge wave. The long period standing wave form 
an antinode at the shoreline, exhibiting swash oscillations. There has 
been some discussions whether the observed long period fluctuations are 
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two- or three-dimensional. It is critically higher mode or cut-off mode 
edge waves that were employed to fit the data by Huntley (1976) and 
Sasaki & Horikawa (1978). It is shown, e.g. by Hotta et al. (1980), 
that the higher mode edge waves do not quantitatively differ from the 
two-dimensional standing waves as far as the fluid motion in the near- 
shore zone is dealt with. Therefore in this paper only two-dimensional 
motion is assumed as is done by Suhayda  (1974). 

This study comes from the first motivation mixed with the second 
findings. That is to test a hypothesis based on the linear long 
standing wave theory against a field experiment. 

2.     SWASH  OF   REGULAR WAVES 

The wave run-up on a somewhat artificial beach has been studied 
for a long time and of their main concern has been the highest point of 
the up-rush. For example see Hunt (1959) The long history of the 
studies on its dynamics can be looked at from the following two view- 
points. There are a group of papers in which they looked at the swash 
motion as the highly nonlinear process and treated it as a bore on a dry 
bed. For example Shen & Meyer (1963). This approach indicates that the 
wave front shows a parabolic motion on a frictionless plane beach and 
that the total excursion width Y is given by the following relation 
for regular waves (Van Dorn,1976). 

i 

Y = l/|8gT2tan2,3 f   '' , (D 

where g is the gravitational acceleration, T is the wave period and 
tan3    is the bottom slope. 

Another long history can be traced back to Lamb (1932). The swash 
motion is considered to be a standing wave on a sloping beach. The 
linear long wave theory gives the following well-known results for the 
water surface elevation ij and the offshoreward velocity u for the 
perfectly reflected waves on a plane beach. 

o"       v  = "2ary0(z)cos at (2) 

:     '   u =   2a].v'a7hJ1(z)sin at (3) 

where z=\/ax,   a =4 a  /gtan/3 and 2a is the amplitude of a standing 
wave at the shoreline.  The x axis is taken offshoreward along the 
still water surface from the shoreline.  The finite amplitude theory by 
Carrier & Greenspan (1956) shows that the amplitude of the swash motion i 
does not differ from that given by the linear theory Eq.(2). 

The standing wave solution, however, is no longer valid when the 
so-called swash parameter e  which is defined as 

«r = 2ar * 
2/gtan2/3 Owf ?V:"  ''"     '''    *   '" (4) 

exceeds a certain critical value t . Miche (1951) argued that the 
surface slope at the shoreline should not be smaller than the beach 
slope and gave e  =2. The finite amplitude wave theory gives e _ =1 as 
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a necessary condition for the theory to yield a solution (Meyer & 
Taylor, 1972). The critical value ^=\ also corresponds to a condi- 
tion that maximum downward acceleration of the swash is equal to the 
gravitational acceleration along the beach slope. Miche also proposed 
a hypothesis that the reflection coefficient for the incident waves on a 
plane beach may be given as follows. 

2/ 0 
£VH &x< 

where = V2T an 
2,, .  5/2, • /(gtan  £ 

fy i\ o'r (5) 

(6) 

and r» is the reflection coefficient in deep water. The parameter t „ is 
equivalent to the swash parameter « and is calculated under the condi- 
tion of perfect reflection, using the relation, 

a0vW2tan^ t 4>€r-£o (7) 

Equation (5) simply states that the possible swash oscillation is always 
limited by his critical condition. 

y 

Guza & Bowen (1976) carried out detailed laboratory experiments in 
order  to  investigate the behaviour  of the standing waves.      They found 
(1) that the incident waves are perfectly reflected and the observed 
spatial distribution of the wave height agrees well with Eq.(3) when 
e Q<1, and (2) that Miche's hypothesis on the reflection coefficient 

given by Eq. (5) shows a reasonably good agreement with their 
experimental results when «0>1.6, being taken into account the effect 
of bottom roughness. Their study confirmed that the swash oscillation 
can be considered at least on a rather steep beach as the antinode 
motion of two-dimensional standing waves, which survived wave breaking. 

Comparing these two different approach to the regular wave swash, 
one may notice that Eq.(l) is quantitatively almost identical to Eq.(5). 
Substituting Y=2ar into Eq.(l) gives < =2.5. Figure 1 compares the 
experimental data by VanDorn (1976) with those two semi-theoretical 
results. It is clearly seen that the data agrees with Eq.(5) when the 

y parameter Lntan /3   is large, in other words, high reflection coeffi- 
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Fig. 1  Total excursion of swash (VanDorn, 1976), 
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cients can be expected. As the parameter decreases, Eq. (1) tends to 
show a better agreement, although the difference between the two lines 
is small as already pointed out. However it should be noted that, in a 
strict sense,  the wave amplitude should affect the transition. 

It is tempting from the above discussion to make a statement that 
the swash oscillation is, in any case, the antinodal motion at the 
shoreline of a standing wave, which survives its breaking on the slope. 
Practically, as pointed by Guza & Bowen (1976), Miche's criterion Eq.(5) 
provides the " surviving " ratio, as far as wave breaking occurs only on 
the foreshore slope. The following viewpoint can be added to support 
this tempting conclusion. It is not an unreasonable conjecture that 
the swash oscillation, which might be given through a complicated non- 
linear process on a gently sloping beach, plays a role to generate an 
outgoing wave by its periodic or unsteady forcing. The outgoing wave 
forms a standing wave, coupling with the incident wave. Hence the 
swash motion may well be treated as that of a standing wave at least as 
a first approximation. Therefore the following expression would be 
applicable to describe the wave motion near the shoreline not only for a 
steep (reflective) beach as confirmed by Guza & Bowen (1976) but also 
for a gentle (dissipative) beach,   again as a first approximation. 

n =   a.{jQ(z)cos at   - YQ(z)sin at)   +   2arJQ(z)cos crt (8) 

u =v/a7h"[ai{J1(z)cos crt  +  Y-L(z)sinat}   +   23^^)3^ <rt] (9) 

where a. is the amplitude of the progressive wave, which should change 
to be zero at the shoreline. The local reflection coefficient r=a /(a. 
+a ) varies with the on-offshore location as a. does. The bottom 
profile in the field scarcely shows a plane beach. Then Eqs.(8) and (9) 
can be easily extended to the case of a complex beach profile by 
applying a multi-linear profile approximation. 

3.     A  MODEL FOR  IRREGULAR WAVE  SWASH 

For irregular waves, one, who put the stress on the high non- 
linearity of the process, may introduce a model based on the joint 
probability distribution of the wave heigts and periods. For examples 
Battjes (1971) and Sawaragi & Iwata (1984). It is generally accepted 
that the swash motion on a gently sloping beach is described in such a 
model. However the long period fluctuation in the swash is significant 
as reported in many field experiments. The individual wave analysis 
clearly fails to be meaningful when the long period fluctuation exists, 
unless it is removed before the analysis is applied  (Mizuguchi,   1982a). 

Here a tentative model is proposed based on the previous discussion 
and illustrated schematiclly in Fig. 2. The model implies that the 
Fourier component of the irregular wave behaves independently even 
through the very nonlinear process like wave breaking, as far as the 
long period motion is concerned. It is trivial that this model has the 
shortcomings, as not only the real swash motion but also the waves near 
the shoreline show some nonlinearity. However it is worth trying to see 
how well the simple model based on a linear theory can describe a result 
obtained  in a field experiment. 
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I Standing wave 

[linearly independent] 
H Partially reflected wave 

I    I \ [non linearly 
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Fig.  2     A model for irregular wave swash 

In relation to the critical condition for irregular wave reflec- 
tion, there have been some field observations on the high frequency 
saturation of the swash spectra. Huntley et al. (1977) reported the 
form f _,for the saturated high frequency range. Guza & Thornton (1982) 
found f instead. When the concept of the critical condition could be 
applied for different frequency component independently, one can expect 
a kind of universal form for the saturated region, although it is not 
theoretically clear how the result for monochromatic waves is related to 
that on the irregular waves. The spectral shape of the high frequency 
region is also considerably affected by the profile of the main (peak 
frequency) component. The smoother the profile is, the smaller the 
power leaking to the high frequency region is. In addition, different 
techniques employed to measure the swash may produce different results 
(Guza & Thornton, 1984). Here we will not go further into this 
discussion. 

4.      FIELD   OBSERVATION 

A field observation was carried out around noon on 9th Jan. 1982 at 
Yonezu-hama beach in Shizuoka Prefecture, Japan. The beach faces to the 
Pacific Ocean in south and has a straight extension of about 20 km. The 
beach cusp formation was observed on the previous day. However there 
remained only their ruins around the high water level on that day. The 
observation site was almost at the middle of the beach extension and the 
measuring section chosen on the line of the apex of a beach cusp ruin, 
so that the node of the edge waves had been expected if it had existed. 

In Fig. 3 was shown the experimental setup with the bottom topo- 
graphy along the measuring section. Two artificial channels were 
placed, being extended into the water only to the position of the lowest 
run-down point, just covering the swash zone. The natural swash motion 
was measured between the two channels, by using the photopraphic techni- 
que. Small poles were placed standing on a line, every 50 cm, to give a 
scale. Several poles and two EMCM (Electro-Magnetic Current Meter) were 
also installed on the measuring section. The poles were photographed 
with 16mm camera,   to obtain surface elevation records.     Horizontal 
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Yonezu-hama, Jan.  9,   1982 

•    Pole to be photographed 

A    Electro-magnetic 
current meter 

Distance   C from arbitrary origin } 

Fig.3 Beach profile and experimental setup. The poles with 
a number in brackets denote those analyzed. The approximated profile to 
be used for the later analysis is so close to the measured one that one 
cannot  see the difference. 

velocities were measured with EMCM. The EMCM(on) was situated just on 
the step. The bottom profile was a typical bar-trough one with a step at 
the foot of the swash zone. The slope of the swash zone was 1/9/' The 
beach material of that zone was well-sorted sand with vSZ7/d77=1.7 and 
dj-g=0.4 mm. Visual observation showed (1) that the incident waves were 
long-crested swells with some white caps due to the strong westerly 
wind, (2) that the average breaking point was on the offshoreward slope 
of the bar between the poles (25) and (26), and (3) that the broken wave 
reformed almost completely in the trough region and made surging type 
breaker on the foreshore slope. The measurement was done for the dura- 
tion of lOmin 22s with the sampling interval of 0.2s, yielding 3110 
total  data points. 

Examples of the obtained raw data are shown in Fig. 4. This figure 
shows the following features; (1) Short period waves disappear almost 
suddenly in the swash record, although they are still seen in the sur- 
face elevation at the pole (10), which was in the swash zone. (2) Both 
at the two locations where the horizontal velocity was measured as well 
as the surface fluctuation, they are not correlated, in contrast to the 
in-phase relation for the progressive wave theory. (3) The downward 
motion of the swash, for instance that of about 60s from the beginning 
of the data, shows a very good correlation with the strong offshoreward 
velocity, and the upward motion does with onshore one. The latter two 
features indicate a fact that the long period fluctuations were signifi- 
cant, forming the swash oscillations as the antinode of standing waves. 
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(21)   and   (Off) 

Fig. 4 Examples of raw data obtained. The dotted line on 
the top denotes the swash on a artificial channel. The broken lines 
denote onshore velocity. 

5.  ANALYSIS OF THE DATA 

First, the individual wave analysis was applied to the surface 
elevation data, partly for the purpose to show how unappropriate to 
apply the method automatically. The results obtained in Table 1 show 
peculiar behaviors of the wave transformation in the surf zone. As 
reported by Mizuguchi (1982a) the individual waves propagate independ- 
ently in its literal sense in a normal circumstance, snowing almost no 
change of the wave period distribution. However this results shows a 
considerable change of the wave period in the surf zone, being affected 
by the standing waves of significant magnitude. The standing waves have 
a node and antinode structure, which results in the dominance of shorter 
period waves at the node and longer period waves at the antinode. Table 
1 shows that the significant node lay at the pole (16) where minima of 
both wave period and height were observed. Figure 4 also shows only 
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Table 1 Wave statistics of the surface elevations 

Location Mean water 
level* 

Water depth 
(cm) rms 

(cm) 

H   ** Hl/3 
(cm) 

"1/3 
(s) 

rms 
(cm) (s) 

Swash 190.9 - 16.9 57.1 10.6 45.1 9.5 
(Natural) 
Swash 194.7 - 22.7 77.0 10.9 60.9 9.5 
(Channel) 
No. 10 181.9 10.4 5.9 24.2 10.3 17.0 7.4 
" 12 174.2 23.7 8.5 32.8 6.0 23.4 4.0 
" 13 174.8 47.9 5.2 32.4 4.9 22.3 3.5 
" 16 173.9 60.6 7.3 28.5 4.4 19.9 3.0 
" 20 176.3 82.0 7.6 30.5 5.5 21.0 3.5 
" 21 - (83.5) 7.8 31.8 6.0 21.9 3.6 
" 25 176.3 85.5 13.4 59.5 6.9 40.0 4.3 
" 26 176.3 123.0 13.2 50.7 6.4 35.5 3.9 

Reference is made to an arbitrary level as is in Fig. 3. 
Zero-down crossing method is applied with a band width of 1 cm for 
the mean water level (Mizuguchi, 1982a). 

short period fluctuation at this position. This result shows that it is 
essential to separate the long period fluctuations which are of standing 
waves, in order to discuss the transformation of the progressive waves 
in the surf zone. Table 1 also shows that the significant breaking wave 
height and period were about 60cm and 7s respectively. 

Secondly the obtained surface elevations were studied in the 
frequency domains. Figure 5 shows the two-sided power spectra of S (f) 
at the representative locations as well as that of the swash on the 
natural beach. There are following two points to be noted. 
1) There are seen three distinct regions of the high frequency satura- 

tion. One is the f~ law for the high frequency region of the incident 
wave spectra around the breaker line. This is consistent with the 
result reported by Thornton (1977), however the physical argument is. 
Second and third ones, which are more interesting here, are the f 
observed in the intermediate frequency range from 0.2Hz to 0.5Hz in the 
surf zone, and the f~ for the entire high frequency region of the 
swash. The simplest argument to give the f~ law is to assume that the 
power spectra is determined by the depth-controlled wave breaking where 
the wave height is almost proportional to the water depth d as done by 
Sawaragi & Iwata (1980). This assumption yields the relation S , (f) 
=d f~ , based on a dimensional analysis. This relation may hold only 
for the lower frequency than the limit of the long wave assumption. 
However in this observation the f~ law is seen to the higher frequency 
range than this limit. Third one, high frequency saturation of the 
swash, has been recently investigated as already mentioned. It is 
useless to repeat the argument, unless one can add the more convincing 
model to describe the swash motion on a natural beach. Here it is taken 
for granted that .there is a saturation for the swash spectra and the 
form obeys the f~ law as obtained. 
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10"J    w        ltr-1-        1 10 
Fig. 5      Two-sided spectra of surface elevations at various 

points as well as of swash on natural beach. 

2) The peak frequency of the swash is 0.1Hz as shown by the arrow. 
However the power corresponding to the peak almost disappears making a 
deep trough for the spectrum measured at the pole (13), which is just 
off the step at the foot of the swash zone. This fact suggests that the 
powers around the peak frequency are of standing waves. 

Now it will be shown how well the linear long standing wave theory 
can describe the observed fluid motion including the swash. In the 
following three figures the results denoted by the solid lines for the 
perfect reflection model were calculated by using Eqs.(l) and (2) for 
the approximated multi-linear profile shown in Fig. 3. The dotted 
lines are those obtained by a partial reflection model which will be 
explained in the next section. Figure 6 shows the cross spectra between 
the surface elevations at the two different locations, (13) and (16), 
both of  which were  in the wave reforming  zone.     The agreement between 
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Fig. 6 Cross spectra between surface elevations at poles 
(13) and (16). The solid line denotes results for perfect reflection 
and the dotted lines those for a patial reflection model. Coherence is 
given by the ratio of tansfer function to the root of power ratio. 
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10 r O Root of power ratio 
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Fig. 7  Cross spectra between surface elevation and onshore 

velocity at pole (21). 
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Fig.  8      Cross spectra between swash and surface elevation at 

the theory and the measurement is remarkably good for the lower frequen- 
cy region than 0.1Hz, except very near the zero frequency. Figure 7 
shows the cross spectra between the surface elevation and the onshore 
velocity at the point (21). In this figure one can obtain the same 
conclusion as in Fig. 6. The third figure, Fig. 8 shows the cross 
spectra between the swash and the surface elevation at the pole (21). 
The good agreement between the experiment and the perfect reflection 
model is only found around the peak frequency 0.1Hz, where the signifi- 
cant power of the spectra was observed. The following conclusions can 
be drawn from these three figures. (1) The long period fluid motion 
inside the surf zone is well described by the linear long standing wave 
theory. (2) The measured data in all of the figures shows large devia- 
tion from the theory in the higher frequency range beyond 0.1Hz. This 
corresponds to the inception of wave breaking. (3) In the low frequency 
range in Fig. 8, the swash motion tends to be about twice larger than 
that predicted by the theory, although the agreements are reasonably 
good in other two Figs. 6 and 7. This indicates that there might be 
taking place some nonlinear processes which work only in the swash zone 
to produce the longer period motion, transfering the energy from the 
shorter period one to the longer period one. 

In concluding this section, it should be noted the magnitude of the 
power spectra of the alongshore velocity component was one-twentieth or 
less than that of the onshore component and can be maintained that there 
existed no significant edge waves. 



SWASH ON A NATURAL BEACH 689 

Table 2 A model to predict the swash spectra 
as well as the reflection coefficient 

/ Input data:  incident wave spectra + bottom profile^ 

Linear long standing wave theory 
(on a multi-linear profile) 

, k . 
[The expected spectra of swash .   ^  

Saturation model 
(cut-off frequency 
+ high frequency saturation) 

L 
The predicted spectra of 
swash S  (f) 

Shallow water wave 
transformation as progressive 
waves, including wave breaking 

Linear long standing wave theory 

|Standing wave component's] Progress ive wave components| 

Reflection coefficient 

6.  PARTIAL REFLECTION MODEL AND THE SWASH SPECTRA 

The observed swash motion as well as the fluid motion in the surf 
zone encourage the model discussed in the section 3. Table 2 illust- 
rates the partial reflection model in terms of the flow of computation. 
The expected spectrum is defined as that which would be realized if all 
the incident wave powers were perfectly reflected. The concept of the' 
saturation is introduced to calculate the predicted swash spectrum from 
the expected one. The assumption that the swash oscillations consist 
only of standing waves makes them equivalent evaluating the reflection 
coefficient at the specified location and determining the swash motion 
at the shoreline. 

In order to obtain the predicted spectra, we exploit the following 
two results. First one is that there is a high frequency saturation. 
The f law is employed here simply as it is the case observed. Second 
one is that the irregular wave trains may show a similar behavior as 
that of monochromatic waves in terms of the "surviving" process through 
the run-up. The method is not yet well established to relate properties 
of the irregular wave trains, with those of the monochromatic waves. 
Here rms swash amplitude 2a and mean frequency f are defined by the 
following relations after LoiTguet-Higgins (1969). 

2a '=*A •i; .(f) df 

f* = [Tf2s/r(f,df/r S,r(f)df] 
1/2 

(10) 

(11) 



690 COASTAL ENGINEERING-1984 

These relations were applied to the measured swash spectra both on the 
natural beach and on the artificial channel^ The representative swash 
parameter obtained by using these 2a and f are respectively 1.18 and 
1.50. These values are reasonably similar to those for the monochroma- 
tic waves so that the analogy between irregular waves and regular waves 
can be considered to work, as far as this experiment is concerned. 
However it could be wrong to take the zero frequency as the lower limit 
of the integral in Eqs.(10) and (11). The lower limit should be chosen 
such that the integral contains only the power of the spectral compo- 
nents affecting the phenomena considered. In this experiment the low 
frequency energy shown in Fig. 5 is not large and do not contribute to 
the integral. It is also true that the fact that the run duration of 
the experiment is the order of ten minutes automatically excludes the 
lower frequency energy contribution. The difference between the values 
on the natural beach and on the artificial channel is mainly due to the 
last moment up-rush which was only observed on the atificial channels as 
shown in Fig. 4. The reason should be attributed to the energy loss for 
the sand movement as well as pecolation on a natural beach. 
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Fig. 9 Representative 
swash parameters versus 
critical frequencies 

Fig. 10 Comparison of predicted swash 
spectra with observed one 
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Then the critical frequency f for the predicted spectra which is 
defined as the highest frequency for perfect reflection or as the lowest 
frequency of the saturation range is jjalculated so that the representa- 
tive swash parameter is equal to. the observed value 1.18. Figure 9 
shows the changes of estimated swash parameters « .versus different 
critical frequencies. Here four pairs of the data were used. It is 
necessary to use a pair of data to estimate the expected swash spectrum, 
as standing waves give nodes for particular combinations of a offshore 
location and a frequency. A practical method to have an average of the 
two quantities is needed, in order to avoid infinite transfer function 
that the nodes give. In Fig. 9 it is seen that the two results cal- 
culated by the pairs of the data in the trough region are almost identi- 
cal, showing that there is no significant wave tranformation in that 
zone. The critical frequency f for these data is determined 0.095Hz. 
The result based on the data at the pole (12) show smaller values and do 
not reach the measured swash parameter, indicating that the pole was 
actually located within the swash zone and some part of the energy was 
already dissipated before reaching the pole (12). The results from the 
offshoreward data, on the contrary, show larger value for the given 
critical frequency compared with the other results. The application of 
this model yields that the critical fequency f should be 0.075Hz. 

Figure 10 shows the copmparison of the three predicted swash 
spectra thus-obtained with the observed swash spectrum. The predicted 
results (denoted by the dotted line or the broken line) based on the 
data obtained in the trough zone agrees very well with the observed one, 
except in the frequency domain lower than 0.05Hz. The reason of this 
difference is already mentioned in the discussion for Fig. 8. The 
poorer agreement of the chain line may mean that the model shown in 
Table 2 should be applied only for the data obtained in the location 
between which and the shoreline there is no wave breaking except that on 
the foreshore slope. 

As shown in Table 2, reflection coefficient at any location can be 
estimated either if the transformation of progressive wave components 
could be estimated or when wave spectrum is measured. In Fig. 11 are 
shown the reflection coefficients calculated by using the observed swash 
spectra together with the observed local spectra. The results based on 
the data in the trough region (denoted by open circles or open tri- 
angles) are supposed to show the reflection coefficients at the slope of 
swash zone. The higher reflection coefficients than unity in the low 
fequency region again correspond to the larger swash oscillation 
compared with the theory as shown in Fig. 8. The most reliable frequen- 
cy region around 0.1Hz shows perfect reflection for the lower frequency 
than the critical frequency 0.095Hz and the decrease of the reflection 
coefficient following f law in the higher frequency region. The f 
law can be understood as follows. As discussed in the previous section 
the high frequency saturation due to the depth-controlled wave breaking 
results in the f~ law. Then the expected swash spectra would be 
constant in that frequency region, as the linear long standing waves 
show the following bahavior as ax is large, 

1   = 2arJ0(v^o ~ f"1/2 (12) 

-4 Taking this into consideration, the f  saturation law of the swash 
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Fig.11 Reflection coefficients observed 

spectra simply indicate the f~ dependence of the reflection coefficient 
at the slope. The reflection coefficients for the combination of the 
poles (25) and (26) cannot be free from the effect of wave breaking on 
the shoreward slope of the bar and are considerably smaller than those 
for the swash slope only. In Fig. 11 is also plotted the reflection 
coefficient calculated from the phase lag between the water surface 
elevation and the onshore velocity at the pole (21). The result shows a 
quantitative agreement with others. The surveying of the position of 
EMCM was not so accurate that one should expect some errors for the 
reflection coefficients especially for figh frequency region. 

Returning back to Figs. 6-8, one can see the agreement improved 
between the results of this partial reflection model and the observed 
results. Especially in Fig. 7, where it is assumed that the progres- 
sive components of the incident wave do not change during the travel 
over the distance, the agreement is excellent. The partial reflection 
model gives slightly higher values than the observed ones in the high 
frequency region in Fig. 9. This is not significant and not worth of 
further consideration at present. However in Fig. 8 the observed 
velocity is considerably smaller in the higher frequency region than 
that calculated by the linear long wave theory. This corresponds to the 
fact reported by Guza & Thornton (1980) and Mizuguchi et al. (1980), 
that the linear (long) wave theory gives larger values of transfer 
function for the progressive waves from the water surface elevation to 
the onshore velocity in the nearshore zone. Nonlinearity can partly 
explain the difference, as the air entrained may account for the rest. 

Finally Fig. 12 shows the result of the comparison of the proposed 
model to the data around the breaker line. The agreement is still good 
particularly around the peak frequency region. In this sense, it should 
be pointed out that the measured swash oscillation makes it possible to 
rather easily evaluate the standing wave components by applying the two- 
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breaker line. 

dimensional  liner long standing wave theory for the multi-linearly 
approximated bottom  topography. 

7 CONCLUSION 

A model to describe the swash motion on a natural beach is deve- 
loped based on three hypotheses. First one is that the swash oscilla- 
tions are considered to be antinode motion of the linear long standing 
waves. Second one is that the swash spectra exhibit the high frequency 
saturation for which the observed f~" law is assumed. Third one is that 
a concept of the saturation developed for the regular waves swash is 
also applicable to the irregular wave trains, as an appropriate method 
to make them related being employed. A field observation was conducted 
on a natural beach with a rather steep foreshore slope. The results, in 
a general sense, confirm the applicability of the model. With regard 
to the three hypotheses, first one is strongly supported by the observa- 
tion. The validity of the concept of the saturation for the irregular 
waves is not so clear and needs further study, although the model works 
very well for this experiment. The minor discrepancy found in the very 
low frequency region suggests that there might be the cases where one 
should take into account nonlinearity to achieve a better agreements. 
It is plausible that the gentle slope of the swash zone provides such 
cases. Another limitation of this model is that the effect of wave 
breaking can not be included, which takes place in other area than the 
swash zone. 
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