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DESCRIPTION    OF    NATURAL    SEA    STATES 

REQUIREMENTS  TO THE  REPRODUCTION  IN MODELS 
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ABSTRACT 

In order to attain a satisfactory reproduction in physi- 
cal and numerical models of Nature's sea states, much devel- 
opment of the description of these sea states has to take 
place.  This paper gives a discussion   (i) of the problems 
that can be considered as solved today, and (ii) of the 
problem areas where much research is still needed. 

Firstly, the paper presents the basic definition of the 
directional  spread  of energy (for a given frequency) as de- 
rived from a field record.  This definition is necessarily 
a statistical one and leads directly to the determination 
in practice of the directional spectrum. 

Secondly, the parameterization of spectra is discussed 
and it is proposed to express one-dimensional storm spectra 
by means of the four -parameter F.1 .-spectrum, which is more 
manageable than the JONSWAP-spectrum. 

Thirdly, it is concluded that the first order compo- 
nents of any spectrum have random phases. 

1.  INTRODUCTION 

In  the modelling of  a  coastal  engineering problem it  is, 
of  course,   desirable  to work with  the  best  reproduction  of 
the  natural  sea  states.     The  degree  of  sophistication,   how- 
ever,   depends  on  the   size  of  the  project  and the  type  of 
model  used. 

For  economic  reasons,   the  study  in physical models   of 
smaller projects  must  be  confined  to  the   1-D  f~spectrum, 
i.e.   the  one-dimensional  frequency  spectrum giving wide- 
crested waves,   i.e.   waves with   (infinitely)   wide  crests. 

The  input wave  data will  often be  given  as,   say,   the 
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100 year storm, where Hs and f„ (peak frequency) have been 
found by extrapolation  of wave statistics, based on (i) ac- 
tual wave records, or (ii) meteorologically based wave hind- 
cast models, or (iii) a combination of both, for example, in- 
volving the forecast of extrapolated 'historical' storms. 

It is quite usual to prescribe a spectrum  corresponding 
to the average parameters determined during the JONSWAP- 
project.  Because of the special characteristics of this 
project (offshore wind), this method is not in general com- 
pletely satisfactory.  It would seem better to parameterize 
the locally recorded spectra and to extrapolate the param- 
eters to 100 years. 

In order to obtain reliable results from models of 
larger projects, it is necessary to reproduce the 2-D   (f,B)- 
speatrum,   i.e. the directional spectrum giving narrow- 
crested waves.  For physical models it is more expensive to 
work with the directional spectrum because of the large num- 
ber of wave generators required and the equipment to control 
them.  On the other hand, in a numerical model, when first 
established, the extra work involved in the use of the 2-D 
spectrum is often not essential. 

In models of disturbance  inside  harbours  the direction- 
al spread of wave energy can influence the diffraction con- 
siderably, cf. Sand et al., 1983 (Ref. 15).  For rubble 
mound breakwaters  preliminary tests have shown that unidi- 
rectional waves may give results on the conservative side 
in shallow water (see the reference in Lundgren, 1983 
(Ref. 8)).  On the other hand, recent failures of major 
breakwaters indicate that the directional spread may give 
catastrophic 3-D effects, perhaps as a result of the occur- 
rence of freak waves.  For vertical  and composite  break- 
waters,  which may be exposed also to shock forces, one 
could imagine that the directional spread of energy would 
give a higher local force but a smaller total force on a 
long caisson. 

The determination  of directional  spectra  is discussed 
in Sec. 2 in terms of what can be characterized as a com- 
plete analysis of the 3-D structure of waves.  Unfortunate- 
ly, rather many papers have dealt with computer simulations 
of directional spectra, and very few have given actual di- 
rectional distributions from recorded data.  Therefore, it 
would be premature to propose an empirical formula covering 
the essential part of the energy in directional spectra for 
storm waves.  On the other hand, such a parameterized for- 
mula  is definitely a prerequisite for the extrapolation to 
rare events.  In addition, there is a great need for stud- 
ies of the spectrum  development because  of shoaling  and 
currents. 

For 1-D spectra  the situation is considerably simpler. 
In this area several parametric formulae have been proposed. 
The JONSWAP-formula is the most frequently used.  It has 
five parameters and exhibits a discontinuity in curvature 
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at the peak.  In Sec. 3 a four-parameter spectrum (without 
discontinuities) is proposed for use in typical storm situa- 
tions.  It is called the F.I.-spectrum  because it was con- 
ceived in connection with the analysis of thousands of spec- 
tra recorded around the Faroe Islands in the North Atlantic. 
A complete procedure   for the determination of the F.I.-pa- 
rameters is described in the Appendix. 

In recent years many papers have been published about 
the grouping  of waves.     This is discussed in Sec. 4, and it 
is contended that all information about the grouping of 
first order components is inherent in the (directional) 
spectrum.  It is therefore proposed that the international 
discussion of grouping be discontinued.  Related to the 
grouping is the occurrence of long waves, a second order ef- 
fect that is decisive for harbour resonance and for drift 
forces.  In Sec. 4 the imminent necessity of recording long 
wave directional spectra is pointed out. 

In some models it is sufficient to reproduce the first 
order components of the (directional) spectrum applying 
random phases.  In other models, however, the higher order 
effects involved in the wave   shapes  must be included, as 
briefly discussed in Sec. 5. 

2.   DETERMINATION OF DIRECTIONAL SPECTRA 

A survey of the methods hitherto used for the determina- 
tion of directional spectra is given by Lundgren, 1984 (Ref. 
9) , as Opening Address at the Symposium on Description and 
Modelling of Directional Seas, organized June, 19 84 by Dan- 
ish Hydraulic Institute & Danish Maritime Institute. 

If a fixed support of instruments cannot be provided, 
a pitch-roll buoy can be used.  It records the water sur- 
face elevation n together with two slopes, nx and n , of the 
water surface.  If a fixed support, for example, an offshore 
platform is available, n can be recorded by a wave radar 
from above or an echo sounder from below, at the same time 
as two horizontal velocities, u and v, are recorded by a 
current meter placed below the deepest trough. 

In principle, there is little difference between ana- 
lysing the set (n,nx,riy) and the set (n,u,v) . The latter 
will be used as basis for the discussion below. 

There are two different methods of analysis: 

A. The correlation method, which requires knowledge of all 
3 time series, n(t), u(t) and v(t), in one vertical. 
This method can deliver approximate information about 
only 4 parameters of the directional distribution of 
energy at each frequency. 

B. The complete FFT-method, which - for practical purposes 
- requires knowledge of only 2 time series, u(t) and 
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v(t).  This method will deliver the most complete infor- 
mation about the directional distribution that can be ob- 
tained from the data recorded. 

The correlation method  was first developed by Longuet- 
Higgins et al., 1963 (Ref. 7).  It is based on the 6 auto- 
and cross-spectra, Sr|n, S^jS^, Snu, Sr)v, Suv.  From these can be 
derived the first 5 coefficients, a0, a:, blf a2, b2, in the 
fourier series development with respect to the direction 6. 
A special correction had to be introduced in order to elim- 
inate the negative side lobes, which would correspond to 
propagation of negative energy in directions away from the 
mean direction. 

In recent years the correlation method has been further 
elaborated in a number of papers, cf. for example, Kuik and 
van Vledder, 1984 (Ref. 5), who give approximate formulae 
for 4 directional parameters, viz. the circular mean direc- 
tion, standard deviation, skewness and curtosis.  The basis 
is still the 6 spectra.  The same applies to a recent paper 
by Isobe et al., 1984 (Ref. 4), who describe an extension 
of the maximum likelihood method to an arbitrary combination 
of instruments as wave gauges, current meters etc. 

The principle of the complete  FFT-method  was first pro- 
posed by the senior author in February 19 78 and worked out 
in details by Dr. S. E. Sand, cf. Sand and Lundgren, 1979 
(Ref. 14) and, particularly, Sand, 1979 (Ref.13).  It can 
be described as follows:  The FFT-analysis of the three time 
series delivers - at a particular frequency to = 2 ir f - the 
fourier coefficients An, B^, Au, Bu, Av, Bv, where the three 
A pertain to cos tot and the three B to sin cot.  (AU,AV) con- 
stitute the velocity vector of a wavelet, for which the en- 
ergy corresponds to IAU,AVI

2 = A* + A^.  If An is positive, 
the wavelet has a crest for t = 0, and the vector indicates 
the direction of energy propagation.  If'A,, is negative, 
the wavelet has a trough for t = 0, and the vector has to 
be rotated 180° in order to give the direction of energy. 
In this simplified description the numerical value of A^ is 
an (unused) redundant.  It i  possible to utilize it in a 
least square method (Ref. 13). 

In 1984 the FFT-method has been further elaborated in 
connection with the analysis of data from the North Sea 
where the wave radar (recording n) for practical reasons 
could not be placed vertically above the current meter. 
For simplicity, only the latter was used in the analysis. 
For a strong storm without essential swell the major part 
of the energy propagates within ± 90° from the mean direc- 
tion.  Therefore it is easy to distinguish between crests 
and troughs. 

The explanation below will be illustrated with a one 
hour record from 1983-10-16 with practically constant wave 
weather with Hm0 = 5.8 m.  With a scanning per 0.5 s there 
is 7200 data available.  Traditionally, this can be divided 
into 14 subseries, each of 512 data.  Each subseries gives 
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a frequency resolution of Af = 1/256 Hz.  For each frequen- 
cy there are four fourier coefficients, Au, Bu, Av, Bv.  The 
total set of fourier coefficients for all frequencies gives 
a complete,   deterministic  description  of the variation of 
the velocities (u,v). 

Hence, for each subseries there is at each frequency 
only  two energy vectors 

lAu'Avl * (Au'Av) and lBU'B\ (Bu'Bv) (2-i: 

Seen from a deterministic point of view, these vectors rep- 
resent the energy spread for the subseries considered. 
Thus, for 14 subseries there are 2 8 vectors.  This ensemble 
will already give some idea of the statistical spread of 
energy. 

Much more directional information can be obtained, how- 
ever, by the method of overlapping  subseries.  Overlapping 
was introduced by Welch, 1967 (Ref. 17) for reduction of the 
variance by the determination of spectra.  Assuming a cos2- 
data taper for the subseries and a large number of subse- 
ries, giving a variance of one of the spectral value at a 
certain frequency, the use of overlapping will, according 
to Welch's formulae, reduce the variance as indicated in 
Table 1. 

Table 1:  Reduced variance by overlapping 

Overlap of each subseries 
with the previous one 50% 66.7% 75% 80% 83.3% 

5% taper each end 

10%        -   - 

0.730 

0.709 

0.683 

0.660 

0.667 

0.645 

0.660 

0.639 

0.656 

0.636 

By 50% overlap the computer work is doubled and the vari- 
ance reduced to about 70%.  For the determination of 1-D 
spectra it does not pay to go any further. 

For 2-D spectra, however, the situation is completely 
different.  Here, overlapping  time  series  will  increase   the 
directional  information  decisively.  Whereas the one hour 
record mentioned above gave 28 vectors at each frequency 
for 14 non-overlapping subseries, an 85% overlap (i.e. a 
shift of 0.15 «512 = 77 data for each subseries) will give 
87 subseries, or 174 energy vectors. 

This is illustrated by Fig. 1, showing the directional 
distribution at the peak frequency 102 mHz.   The trough 
vectors have been rotated 180°, and each vector is referred 
to one of 180 boxes, each 1° wide.  For smoothing, a trian- 
gular window with a base width of only 5° has been applied. 
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Fig. 2 Directional distribution 
for 95% overlapping 

sctional distribution for 95% 
2.  It is seen to be much 

For comparison, the direc 
overlapping is shown in Fig. 
smoother.  In both cases a 10% cos2-taper has been applied 
at the ends of a subseries. 

It is a fundamental fact 
field record can be defined 
ciently long record or by a 
the   overlapping method  leads 
nition  of the  directional 
record. 

that the 1-D spectrum of a 
only statistically, by a suffi- 
spectral window.  Analogously, 
to  the   very  statistical  defi- 

stribution  of energy  in  a field 

If the length of the velocity vector (AU,AV) is squared, 
the vector (Au,Av)-fA*+ A^]

1/2 is obtained.  It is propor- 
tional to the energy.  Thus, each of these vectors defines 
an "energy point" in the plane where 6 = 0 is the u-axis 
and 6 = 90° the v-axis.  Half the points correspond to 
crests of wavelets, the other half to troughs, which - on 
the whole - are in the opposite directions. 

The first principal  axis,  with direction 0O, is the mean 
energy  direction.     It is found from the equation 

IAu Av (Au+Av> + IBu Bv (Bu+Bv) 
tan 20. _ 

IK A,!) (A?, + <) + IK B,2„) (B* + B?) 
(2-2) 

Before Figs. 1 - 2 were plotted, the coordinate system was 
rotated the angle 60, so that the mean energy is in direc- 
tion 0°.  In addition, all energy vectors with directions 
between 90° and 270° were assumed to correspond to troughs 
and were rotated 180°.  This method implies that the small 
amount of energy that propagates in directions beyond + 90° 
or - 90° is mirrored in these directions.  At frequencies 
far from the peak frequency, or if essential swell is in- 
volved, it is necessary to include information from the 
fourier series of n(t) in order to determine the full dis- 
tribution over 360°. 
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It should be noted that with the method developed in 
19 78 a good resolution of the spectrum with respect to fre- 
quencies was accompanied by a poor resolution with respect 
to directions and vice versa.  With the overlapping method 
a good resolution  can be obtained simultaneously in frequen- 
cies and directions. 

With this method it should also be possible to study 
the spectral properties that give rise to freak waves. 

Excellent deterministic  reproduction  of the 3-D struc- 
ture of waves may be obtained by means of 6 0 wave genera- 
tors, as shown by Aage and Sand, 1984 (Ref. 1) . 

3.  F.I.-SPECTRUM 

Four waveriders placed around the .Faroe Islands have 
delivered a comprehensive material, for the analysis of 
which the socalled F.I.-spectrum has been chosen 

S(f) = Ap (f/fpr"iexp[-Bp (f/fp)"*
8] (3-1) 

This formula is a generalization of the P-M-spectrum, for 
which iPi = 5 and cp2 = 4.  The Ochi-spectrum is the sum of 
two similar terms, both with <p2 = 4.  At the 19th ICCE in 
Houston, 1984, Liu (Ref. 6) has, independent of the present 
authors, reported the use of a formula that differs from 
(3-1) only in the symbols. 

The F.I.-formula can be fitted with good accuracy to 
more than 95% of all spectra of larger waves.  It has only 
four parameters, because the powers of fp may be included 
in Ap and Bp. 

A procedure for the determination of A_, Bp, tpT , cp2 is 
described in the Appendix.  It is based on the moments of 
(3-1), which can be expressed by means of the r-function, 
see Eq. (A-4).  This circumstance has previously been uti- 
lized by Ochi and Hubble, 1977 (Ref. 11) and by Houmb, 1984 
(Ref. 3).  The advantage of using the moments is that they 
have a much smaller variance than the individual spectral 
values S(f). 

An example of an F.I.-fit is shown in Fig. 3 for a 20 
minute record with 9 non-overlapping subseries, each of 256 
data.  (With a 10% data taper it is recommended to use 55% 
overlapping, cf. Table 1, Sec. 2.)  The abscissa is the fre- 
quency number i = f/Af, where Af = 1/128 Hz.  The moment 
M(n) in (A-2) and its derivatives in (A-12/14) have been 
taken at n = -2, with summations extending from imin = 5 to 
W = 30. 

The spectrum of the wave record is shown with dots. 
For this spectrum, with Hm0 = 11 m, the values cpj = 3.5 and 
tp2 

= 10.6 have been found. 
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4.  WAVE GROUPING AND LONG WAVES 

It is well known that there is a steadily ongoing 
multi-exchange  of energy   (or rather wave action) between 
infinitely many combinations of four wave number vectors. 
Because of this exchange, the  phases  of the  infinite  number 
of first  order wave   components   are  random.     It is excluded 
to define a "phase spectrum". 

Hence, the grouping  of waves   in a stochastic ensemble 
of shorter and longer groups is determined uniquely by the 
spectrum.  On the average, a narrow spectrum gives long 
groups and a wide spectrum short ones.  A very long wave 
record is required in order to obtain a complete statisti- 
cal picture of the grouping. 

For a steady wave  state  the grouping is associated with 
a pattern of second order   long waves   (SOLW) in such a manner 
that the long waves have troughs where the short waves are 
high, and crests where the short waves are small.  Formulae 
for the SOLW for an arbitrary directional sea in arbitrary 
depth were given by Sharma and Dean, 1979 (Ref. 16).  Inde- 
pendently, Ottesen Hansen et al., 1981 (Ref. 12) established 
the corresponding formulae for a unidirectional sea.  The 
SOLW have frequencies and wave number vectors equal to the 
differences between frequencies and wave number vectors of 
pairs of first order wave components. 

In practice, however, all wave  states   are  unsteady. 
Because of the movement and the change of the wind field, 
the change in water depth and current as the waves propa- 
gate, wave-wave interaction and energy decay, there is a 
continuous change of the (directional) spectrum.  Since the 
characteristic frequencies of the long waves are the differ- 
ences between frequencies of the short ones, the long waves 
can only gradually adjust themselves to the changing short 
wave spectrum.  If, for instance, the wind field changes 
direction, the short waves may turn relatively fast, whereas 
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the long waves will turn much more slowly.  Hence, it is 
possible to speak of a partial  separation  of the long waves 
from the short ones. 

The long waves are responsible for harbour resonance 
and will often be the dominant cause of drift forces, cf. 
Lundgren et al., 1982 (Ref. 10) .  Hence, there is an urgent 
need for good reoords  of directional  spectra  of  long waves. 
Since long waves have a much larger directional spread than 
the short ones, it is necessary to determine their distri- 
bution over the full circumference of 360°.  This cannot be 
done with a pitch-roll buoy because of its poor response 
for low frequency heave motions.  Therefore, it is neces- 
sary to record three time series (n,u,v) with a fixed in- 
stallation and analyse the data with the overlapping method. 

5.   WAVE SHAPE EFFECTS 

The spectrum represents the superposition of a large 
number of small sinusoisdal components.  In contrast to 
sine curves, high waves have elevation  skewness,   i.e. the 
crest height is larger than the trough depth, and they may 
have slope  skewness, i.e. the wave front is steeper than 
its back. 

In some model tests, for example with vertical and com- 
posite breakwaters, it is necessary to also reproduce the 
natural wave shapes.  The deviations from the "sinusoidal" 
shapes are second order  short  waves   (SOSW), generated by 
the first order components through the nonlinear surface 
conditions or the bed slope.  The SOSW have frequencies and 
wave number vectors equal to the sums of frequencies and 
wave number vectors of pairs of first order wave components, 
cf. Sharma and Dean, 1979 (Ref. 16). 

Because of the high frequencies of the SOSW, they have 
a good possibility of adjusting themselves to the local 
first order wave conditions, provided that the bed slope is 
not too large.  By abrupt changes, however, a partial  sepa- 
ration  may take place.  This was shown by Biesel, 1963 
(Ref. 2) in connection with the diffraction of regular high 
waves into a harbour model and the refraction across a 
shoal.  In both cases the height of the first order waves 
changes over a rather short distance and, if the first order 
wave is reduced to 90%, the corresponding SOSW is reduced 
to 81%.  Therefore, some SOSW energy is released and dif- 
fracted/refracted in a different manner. 

A particularly strong nonlinear effect is present in 
freak waves,  where a very high 3-D crest is surrounded by 
troughs of normal depth, cf. Fig. 4. 



510 COASTAL ENGINEERING-1984 

Fig.   4 
Record with 
freak wave 
from the 
North  Sea, 
1981-11-25 
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APPENDIX:       DETERMINATION  OF  F. I .-PARAMETERS 

From the FFT-analysis the empirical spectrum S (f) is de- 
termined at the equidistant values f = i • Af, with i = 1, 2, 
3, ...  For simplicity, the spectrum is considered a func- 
tion of the frequency  number  i, i.e. 

S(i) = A i_tpi expT-B i_cp2] (A-1) 

Expressed in frequency numbers, the moment of order n is 
00 r °° 

M(n)   =   I     in  S(i)   «* in  S(i)  di 
i = l   a 

J0 

= A f  i""*1 •exp[-Bf<p2] di (A-2) 

After introduction of the parameter 

z = z(n) = (ipj-n-U/iPj (A-3) 

and the substitution t = B i""*2, (A-2) may be written 

tz_1 e_t dt = AcpI1 B_z T(z)   (A-4) 
Jo 

the infinite integral being the definition of the gamma 
function. 

Hence, the problem is, from a knowledge of the moments 
M(n) , to determine the four parameters A, B, ip! , ip2.  Since 
(Pj and tp2 through the parameter z are 'well hidden' under 
the r-function, this is a seemingly difficult problem.  It 
may be tackled in the following manner:  The logmoment  P(n) 
is introduced by taking the logaritm of (A-4) 

P(n) = In M(n) = In A - In ip2 - z In B + In r (z)  (A-5) 
In the following, M(n) and P(n) are considered functions of 
the continuous variable n and may be differentiated with re- 
spect to n. 

Since z' (n) = -(pj1, the first derivative of (A-5) is 

where 

P' = p'(n) = M'/M = cp^1 In B - (p^1 tfi(z) (A-6) 

t|)(z) = r'(z)/r(z) (A-7) 

is the digamma function, also called the psi function. 

The derivative of (A-6) is 

P" = M"/M - (M'/M)2 = tp| ^' (z) (A-8) 

where <JJ'(Z) is the trigamma function.  Finally, the deriva- 
tive of (A-8) is 

pi,. _ M'"/M _ 3 (M"/M) (M'/M) + 2 (M'/M)3 

= - cpl *"(Z) (A-9) 



NATURAL SEA STATES DESCRIPTION 513 

where i>" (z)   is the tetragamma function. 

In (A-8) and (A-9) both tp2 and z are unknown.  There- 
fore, ip, is eliminated by introducing the ratio  function 

R(z) = (P"')V(P")3 = (i|)")7(*')3 (A-10) 

where P is differentiated with respect to n and lp with re- 
spect to z. In principle, R(z) may be tabulated from pub- 
lished tables of the ty"   and ip1 functions. 

Assuming that P"' and P" have been calculated from the 
given spectrum for a chosen value of n, the procedure   is 
now:  Calculate the value of R from the first expression in 
(A-10), and find the corresponding value of z as the inverse 
function 

z = z(R) (A-11) 

from the table mentioned. In practice, no table is needed 
because an approximate formula for z(R) is given below. 

According to (A-6,8,9), the derivatives P', P", P1" of 
the logmoment P can be found from the moment M and its de- 
rivatives M', M", M"'.  For these derivatives the following 
formulae are easily derived from (A-2) 

(A-12) 

(A-13) 

(A-14) 

Based on analyses of a number of Faroe Island spectra, 
the present authors recommend the following procedure: 

(a) In the sums (A-2,12,13,14) choose n =-2.  (n = - 1 has 
been found not to reproduce a sharp peak in the spectrum 
sufficiently well,  n = -3 has been found to give practical- 
ly the same spectral shape as n = - 2.)  In order to compare 
the F.I.-parameters for different storms, it is advantageous 
to use the same n for all spectra. 

(b) The summations in (A-2,12,13,14) must not  start from 
i = 1.  The reason is that the left hand side of the F.I. 
spectral shape is very steep down to extremely small values. 
Therefore, if the empirical spectrum has points above this 
steep slope - for example, because of the presence of some 
swell - such points would influence the F.I.-parameters in 
a most  disturbing  manner if they were included in the summa- 
tions.  In most cases the following rules may be applied: 
(i) To the left of the maximum, Smax, of the given spectral 
values all points are included for which S(i) > 0.25 S„jax. 
(ii) Below 0.25 Smax at least one more point is included but 

M' (n) =1   lni-inS(i) 
i=l 

M" (n) =   I   ln2i • in  S(i) 
i=l 

M'"(n) =   I   ln3i • in  S(i) 
i=l 
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otherwise  the   summations  stop at  the  value  imin   for which 

s(Wn)    "   s[imin-l)   <   0.8  [s(imin+l]-   S (imin) ] (A-15) 

this inequality indicating that the steep slope does not 
continue further to the left. 

(c)  The summations (A-2,12,13,14) need only extend to a 
value, imax, for which the spectral values are so small that 
they do not influence the sums essentially.  In this respect 
the value n = - 2 helps in reducing the influence of large 
i-values. 

(d) 

(e) 

(f) 

(g) 

(h) 

M, M', M" and M1" are calculated. 

P', P" and P"' are calculated. 

R is calculated from (A-10). 

q is calculated from 

z is calculated from the approximation 

R  z  =   1.8024  q +   0.7906   q2 -   1.5920  q 

-   2.252  q3-379   (1 - q) 

4.640 

1.589 

(A-16) 

(A-17) 

The error on z according to this formula is numerically less 
than 0.17% for z < 1.5 and less than 0.29% for all z. 

(i)  Calculate f (z) from the formula 

(A-18) 

where 

1/rt z) -  I  ck zk 

k=l 

k ck k ck 
1 1.00000 00000 000000 11 0. 00012 80502 823882 
2 0.57721 56649 015329 12 —0.00002 01348 547807 
3 —0.65587 80715 202538 13 -0. 00000 12504 934821 
4 —0. 04200 26350 340952 14 0.00000 11330 272320 
5 0. 16653 86113 822915 15 -0. 00000 02056 338417 
6 —0.04219 77345 555443 16 0. 00000 00061 160950 
7 —0. 00962 19715 278770 17 0. 00000 00050 020075 
8 0. 00721 89432 466630 18 -0.00000 00011 812746 
9 —0.00116 51675 918591 19 0. 00000 00001 043427 

10 —0.00021 52416 741149 20 0. 00000 00000 077823 

(j)  Calculate I)J(Z) from the formula 
10 

,P(Z) = - y  - 1 +     I    _-!_-- + z s, - z2 I, + z3 l„   - 

where 

2   u,  m (z+m) m— 1 

0.57721 56649  and .-k 

(A-19) 

(A-20) 
m=ll 
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[The formula for ij>(z) has been derived by differentiation 
of the logaritm of Euler's infinite product for 1/r(z). 
Since I|J (z) has simple poles at the points 0,-1,-2, ...., 
the convergence of the series (A-19) has been improved by 
separating the first 11 poles with their respective resi- 
dues.]  The numerical values of £k are *) 

I2 9.516 633 568 • 10-2 

2.866 502 175 • 10"" 

1 .549 542 998 • 10~6 

£8 = 9.942 690 896 • 10" 

210 = 6.927 213 • 10": 

4.524 917 486 • 10"3 

2.041 379 870 • 10"5 

1.224 317 311 • 10~7 

8.236 974 0 • 10~10; 

10" 

3.80  • 1f 

En   =   5.89777 •  10" 

=   4.388 •  10"1"; 

:   3.3 •  10~16. 

(k) Calculate <|i' (z) from the formula 
10 1 

i|>' (z)   =     T      !—-r +  I2 -  2z   L+3z! 

(z+m) 
4z3 

(A- 21) 

(A- •22) 

(A- -23) 

(A- -24) 

m=0 

(1)     Find cp2   from   (A-8)   as 

cp2   =   [V (z)/P"(n)] 

(m)  Find (p; from (A-3) as 

ipj = z ip2 + n + 1 

(n)  Find B from (A-6) as 

In B = P' (n) (p2 + t(j(z) 

(o)  Find A from (A-4) as 

A = M(n) tp2 B
z/T(z) (A-25) 

(p)  Plot the graph of S(i) according to the F.I.-formula 

(A-1) and compare with the given spectral values.  In spe- 
cial cases it may be necessary to choose another value of 
* min than given by the rules (i) and (ii) under item (b) 
above.  In some cases another value than n = - 2 may have 
to be chosen; see (a) above. 

(q)  Calculate the peak frequency from 

ip = [B <p2/vj ^ 

and the peak spectral value from 

SP = A ip'Pl exp(-<p/(p2) 

(A-26) 

(A-27) 

*) The last few decimals in these values are not reliable. 




