
CHAPTER TWENTY FIVE 

On A Design Wave Spectrum 

Paul C. Liu*, M. ASCE 

We propose the use of a generalized representation for acquiring a 
design wave spectrum. The generalized form, free from any predeter- 
mined coefficients and exponents, requires only significant wave height 
and average wave period as input for practical applications.  The use- 
fulness of this representation has been demonstrated with over 2000 
measured deep-water wave spectra recorded from NOMAD buoys in the Great 
Lakes during 1981. 

Introduction 

Since Neumann (1953) first introduced his representation for wind- 
wave spectra to facilitate wave prediction, coastal engineers have en- 
deavored for over three decades to develop a realistic representation 
of wave spectra.  The two-parameter spectrum of Bretschneider (1959), 
the fully developed spectrum of Pierson and Moskowitz (1964), and the 
fetch-limited spectrum of JONSWAP (Hasselmann et al., 1973) are notable 
examples. Among these, the JONSWAP spectrum is perhaps the one most 
widely used in wave modeling and engineering designs during the last 
decade. 

All of these proposed spectral forms consist of a number of 
empirical coefficients and exponents that differ among various authors, 
while the overall forms are basically similar.  The applicability and 
universality of these coefficients and exponents has frequently been 
the subject of question or dispute.  For instance, the rear face of the 
spectrum in the high frequency range was first intuitively set by 
Neumann to be proportional to the -6th power of frequency.  Later 
Phillips (1958) deduced from dimensional considerations that the expo- 
nent should be -5.  The -5th power dependence on the high frequency 
side of the spectrum seems to have been substantiated by many labora- 
tory and field measurements. Most of the spectral forms use the -5 
formulation. More recently, however, Kitalgorodskii (1983) found 
theoretical as well as experimental evidence that the exponent should 
be -4 instead.  The situation remains unsettled. Moreover, the widely 
used average JONSWAP spectrum consists of four numerical parameters, 
three of which are averaged from largely scattered empirical data 
points. When applying the formula with these empirical numbers in 
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practice, it is seldom certain how close the representation is as com- 
pared to the actual modeling or design conditions. 

In this paper, we propose an alternative approach by using a gen- 
eralized form (Liu, 1983) that avoids predetermining any coefficient 
and exponents in the spectrum representation. They can all be obtained 
from known spectral parameters. Hence, if design wave conditions are 
given, relevant spectral parameters can be estimated and a design wave 
spectrum can be readily determined. 

The Spectral Form 

The generalized spectral form given by Liu (1983) in representing 
a one-dimensional, single peak frequency wave spectrum is 

S(f) = C1(E/fm)(f/fm)"
C2exp[-C3(f/fm)"

C2/C3] (1) 

where E = /S(f)df is the variance of the surface displacement, fm is 
the frequency of the spectral peak, and C^'s are dimensionless coef- 
ficients and exponents that can be determined from given spectral 
parameters. 

To show how the Cj/s are determined, we note first in eq. (1) that 
for f = fm 

Cj - exp(C3)S(fm)fm/E (2) 

Furthermore from the definition of E and using the gamma function V 
with eqs. (1) and (2), we find 

E/(S(fm)fm) - exp[C3 + (1 - C3 + C3/C2)lnC3]r(C3 - C3/C2)/C2   (3) 

which is an equation for C2 and C3.  Now if we use the average fre- 
quency fa defined by Rice (1944) 

i\ =   [Jf2s(f)df]/[/S(f)df] (4) 

and substituting S(f) from eq.(l) and using the gamma function again, 
we have another equation for C2 and C3 

(fa/fm)
2 - exp(2C3ln C3/C2)T(C3 - 3C3/C2)/r(C3 - C3/C2)    (5) 
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Thus we have two equations [(3) and (5)] that can be solved for C2 and 
C3 if the parameters E, fa> fm, and S(fm) are given. Then Cj can be 
found from eq. (2) and the spectrum is fully determined. 

The representation eq. (1) has been applied to over 2000 sets of 
deep-water wave spectra measured from NOMAD buoys moored in the Great 
Lakes with water depth ranging from 15 m to 250 m.  Sample comparisons 
are presented in Liu (1983).  It was found that the spectral form fits 
the measured spectra very well under a variety of wave conditions.  The 
close fit was especially evident for large storm waves.  Perhaps the • 
spectra that eq. (1) does not fit well were those multimodal ones that 
occur mainly during the early stage of wave growth. 

The process for solving eqs. (3) and (5) can best be achieved 
iteratlvely.  Liu (1983) presented a workable empirical trial and error 
procedure. A more effective approach is to apply the iteration proce- 
dure using the, Newton method to solve eq. (3) (Liu, 1984a; Fullerton, 
1984) for C3 with an initial C2.  These values are then substituted 
into the right-hand side of the following equation obtained from eqs. 
(3) and (5) 

C2 = exp[C3 + (1 - C3 + 3C3/C2)lnC3]r(C3 - 3C3/C2)/D      (6) 

where D = (fa/fm)
2E/(S(fra)fm).  If the C2 calculated from eq. (6) is 

not nearly equal to the previous one, then the new C2 will be used for 
input and the procedure is repeated again until C2 converges. 

The Applications 

The practical applications of the generalized spectrum form eq. 
(1) require the parameters E, fa ,fm, and S(fm) to be known. With 
these four parameters, all the useful spectral properties can be 
readily deduced.  For example, the nth moment of the wave spectrum is 
given by 

Mn = (2it)/f
nS(f)df 

= E(21rfm)
n(C1/C2)exp[(l-Z)lnC3]r(Z) (7) 

where  Z = C3 -  (n +  DC3/C2.     From eq.   (7),   the  spectrum-width parame- 
ter  is  then 

e2 -  1  - M|/(M0M4) 

1 - r2(c3 - 3c3/c2)/[r(c3 - c3/c2)r(C3 - 5c3/c2)]   (8) 
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Therefore, relevant spectral characteristics can generally be estimated 
if we know the four essential parameters. 

Among the four parameters, E and fa are obtainable from design 
wave information (e.g., E = (H1/3M), where H^/3 is the significant 
wave height).  The parameters S(fm) and fm are in general, however, not 
readily obtainable without actual measurements.  For practical applica- 
tions, Liu (1983) found that for fa and fm in Hz, S(fm) in n#Hz, and E 
in n?the following empirical correlations exist for deep-water wave 
spectra 

fa = 0.82(fm)0.74 (9) 
and 

S(fm) = 17.0(E)1-13 (10) 

which effectively reduced the necessary parameters to only two. 
Applying eqs. (9) and (10) in practice, we can always acquire a reason- 
ably accurate deep-water design wave spectrum with only customarily 
available design wave conditions, e.g., a significant wave height and 
an average wave period. The applicability of eqs. (9) and (10) has 
been further corroborated with over 2000 measured wave spectra as shown 
in Fig. 1.  These measured data, recorded from the eastern Lake 
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Figure 1.  The correlations between fa and fm and between S(fm) and E. 
The straight lines correspond to eqs. (9) and (10), respectively. 
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Superior buoy during 1981, consist of waves ranging from 0.2 to over 8 
m in significant wave height. Although dimensionally inhomogeneous, 
the obvious existence of the empirical correlations eqs. (9) and (10) 
has provided a useful modification that simplifies and enhances the 
applicability of the generalized wave spectrum representation eq. (1). 

Assessment of the Representations 

To demonstrate the actual applicability of the generalized 
spectrum form, we use the following deviation index, D.I., defined in 
Liu (1983) as a measure of the accuracy of the representations: 

S(f±) - SR(f±)        S(f±)Af 

»•*• - U—sell) x 10°] t——] (11) 

where S(ff) and Sj^fj) are, respectively, measured spectral density at 
frequency f^ and that calculated from eq. (1); Af is the frequency 
interval used in calculating the spectrum.  Simply stated, this devia- 
tion index is the sum of percentage deviations of calculated from 
measured and weighted by the relative magnitude of the measured 
spectral density. A perfect representation will yield a zero D.I. 
Hence, a smaller D.I. implies a better fit. 

Based on over 2000 measured wave spectra recorded from the eastern 
Lake Superior NOMAD buoy during 1981, our representation with all four 
required parameters had an average D.I. of 30.875 ± 8.756.  The 
modified application with only two parameters leads to an average D.I. 
of 41.896 ± 13.425. 

For comparison, we also applied the J0NSWAP representation to the 
same data set with the coefficients determined through fitting the 
measured spectrum.  The resulted average D.I. is 44.056 ± 27.203. 
Furthermore, when the average J0NSWAP representation with predetermined 
parameters is used, the average D.I. becomes 101.31 ± 82.022. 

Since the data used in the analysis are from both large and small 
waves, it is of interest to eliminate the smaller waves for design pur- 
poses.  For over 900 spectra with significant wave heights greater than 
1 m, the average D.I.'s are 28.510 ± 6.720 and 38.136 + 11.011, respec- 
tively, for the original and modified applications of representation 
(1).  Similarly, average D.I.'s of 27.802 + 8.428 and 52.549 ± 23.032 
are found for the JONSWAP and average JONSWAP representations, respec- 
tively. 

From the above discussion, it appears that the JONSWAP represen- 
tation gives a better fit for waves having a significant wave height 
greater than 1 m. However, JONSWAP only has the advantage when the 
spectra are given and the parameters can be obtained through fitting 
the known spectrum. For practical applications where a wave spectrum 
is not expected to be available, the proper JONSWAP parameters cannot 
be readily obtained; then the generalized representation is certainly 
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more advantageous. A comparison of the various average D.I.'s we have 
calculated makes it evident that the modified approach of eq.  (1), 
which renders a reasonably accurate representation with only H^/3 and 
fa as required inputs, is the most useful and feasible approach for 
acquiring a deep-water design wave spectrum. 

The Equilibrium Range Exponent 

The generalized wave spectrum representation eq. (1) is charac- 
terized by the nonpredetermined coefficients and exponents Cj^'s. What 
is the significance of these C-j/s? Basically, they are simply scale 
factors for the spectrum.  Liu (1983) found evidence that the Cj/s are 
correlated with the wave growth process; i.e., the Cj/s are large 
during early growth and approach some asymptotic value as waves become 
well developed. This is generally the case. We are particularly 
interested in C2, which is the equilibrium range exponent corresponding 
to the high frequency side of the spectrum.  Its exact value has been 
the subject of some controversy. 

Fig. 2 presents a correlation between C2 and the significant wave 
height H1/3 based on the 2000 and more data sets used in this study. 
For smaller wave heights, C2 is generally larger and quite scattered. 
For larger wave heights, the scatter reduces significantly and C2 
appears to cluster around the value 5, which is consistent with many of 
the previous studies.  There is no indication, however, that the expo- 
nent C2 should approach a value of 4. 
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Figure 2.  The correllation between C2 and H1/3. 
The straight line represents C2 " 5. 
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It should be noted that in most of the previous studies the equi- 
librium range exponent was generally obtained by fitting only the high 
frequency side of the spectrum, which basically ignores the total spec- 
trum.  The C2*s deduced in this study relate to the entire spectrum and 
are therefore more representative of the true equilibrium range expo- 
nent. 

Concluding Remarks 

We have shown that the generalized form eq. (1) provides a reason- 
ably accurate representation for the deep-water wave spectrum.  The 
spectrum is fully determined from four internal parameters: the vari- 
ance of the surface displacement E, the average frequency fa, the fre- 
quency of the spectral peak fm, and the energy density at the spectral 
peak S(fm).  Because some of these parameters are not readily acces- 
sible, we have also found empirical correlations between S(fm) and E 
and between fa and fm that can be used to reduce the essential parame- 
ters to two.  This is useful in many coastal and oceanic engineering 
applications when spectral properties are needed and only design wave 
height and wave period are available. 

The analysis presented here has concentrated on deep-water waves. 
One of the immediate interests related to coastal engineering problems 
is the finite depth effect. We have found from a separate analysis 
(Liu, 1984b) that, with four parameters given, the representation also 
applies satisfactorily to shallow-water waves. The depth clearly 
affects the spectral parameters but not the generalized form of repre- 
sentation. There is at present not enough shallow-water wave measure- 
ments to allow a more detailed analysis. 

The contention that spectral characteristics can be obtained from 
given wave height and wave period can also lead to a simplified wave 
prediction process. That is, instead of using complicated spectral 
model predictions, a simpler model can be developed to predict wave 
height and wave period only.  One such model has been developed for the 
Great Lakes (Liu et al., 1984; Schwab et al., 1984) with satisfactory 
results.  Thus, by combining the output from this model with the 
generalized spectrum representation, we can obtain results similar to 
those produced from a general spectral model, but using a simpler 
approach and with greater computational economy. 
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