
CHAPTER SEVEN 

Modeling Turbulent Bore Propagation in the Surf Zone 

David R. Basco1 and lb A. Svendsen2 

Abstract 

Initial efforts to numerically simulate surf zone waves by using 
a modified form of the nonlinear shallow water equations are des- 
cribed. Turbulence generated at the front of the moving bore-like 
wave spreads vertically downward to significantly alter the velocity 
profile and hence the horizontal momentum flux. This influence of 
turbulence is incorporated into the momentum balance equation through 
a momentum correction coefficient, a which is prescribed based in part 
upon the theoretical a(x) distribution beneath stationary hydraulic 
jumps. The numerical results show that with a suitably chosen a(x) 
distribution, the equations not only dissipate energy as the waves 
propagate, but also that the wave shape stabilizes as a realistic pro- 
file rather than progressively steepening as when the nonlinear shal- 
low water equations are employed. Further research is needed to theo- 
retically determine the appropriate a(x,t) distribution. 

1.  Introduction 

The transformation of breaking and broken waves in the surf zone 
is the dominant factor in the hydrodynamics of nearshore circulation, 
runup and sediment transport. Development of rational theories to 
describe breaking waves is just beginning. 

After the moment the plunging jet strikes the onrushing trough, 
the wave undergoes a rapid transition in the region termed the outer 
surf zone (Fig. 1). Soon a bore-like shape appears which is main- 
tained onto the beach or onto a bar profile as long as the depth de- 
creases. This inner surf zone region involves the propagation of un- 
steady bores of non-constant form as they shoal, dissipate energy and 
create a mean water level setup on the beach. 

This paper describes initial efforts to numerically model surf 
zone waves by using a modified form of the nonlinear shallow water 
equations (SWE) with additional momentum flux induced by the mean 
velocity profile through the bore. Numerical integration is by the 
fininte-difference method and emphasis is on the many factors in- 
fluencing the numerical results when compared with laboratory data. 
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OUTER   REGION 
RUN-UP 

INNER REGION , REGION 
Rather slow change in wave shape No "sur- 
Front part resembles (periodic) bore. tacerolier" 

Fig. 1 Wave characteristics in the surf zone, (from Svendsen, et al., 
1978) 

Turbulent Wedge 

Potential Inflow 

Fig. 2 Moving bores and jumps - relative coordinate system. 

Fig. 3 Nonconstant form bores - fixed coordinate system. 
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An early approach to this problem idealized the moving bore front 
as a sharp discontinuity in the flow and used a "shock-fitting" proce- 
dure from classic hydraulic jump theory across the front (Meyer and 
Taylor, 1972, give a review). Others (Lax and Wendroff, 1960; Hibberd 
and Peregrine, 1979) rely on numerical viscosity induced by the coarse 
grid resolution at the front to produce a dissipative effect. Both 
methods do not permit details of the front wave shape nor internal 
dynamics to be resolved and consequently the wave propagation celerity 
is questionable. 

As physically demonstrated by Peregrine and Svendsen (1978), tur- 
bulence is generated at the "toe" or front of the moving bore and 
spreads vertically to significantly influence the velocity profile in 
this high shear flow region. Madsen and Svendsen (1983) quantify this 
concept to develop an analytical model for steady flow, classic 
hydraulic jumps or moving bores on constant water depth. Turbulence 
closure is by a one-equation (k-e) theory for transport of turbulent 
kinetic energy. The mixing-length is related to the turbulent wedge 
(Fig. 2) spreading from the surface at the toe and adjusting the simi- 
larity velocity profile in the downstream direction. Four dependent 
variables result that require solution of the depth-integrated contin- 
uity, total momentum, energy, and potential core-region momentum 
(Bernoulli) equations. 

These ideas and methods were generalized and extended to un- 
steady, non-permanent form, propagating bores by Svendsen and Madsen 
(1984, in review). In a fixed frame of reference, a hyperbolic system 
of four simultaneous partial differential equations result. Addition- 
al turbulence closure relations are also required. Specification of 
the boundary conditions becomes difficult for the numerical solution 
of the four equation system. Without turbulence, the four equations 
reduce to the SWE. 

In the present paper we only consider the depth-integrated equa- 
tions of continuity and total momentum and include the influence of 
turbulence on the momentum flux through a momentum correction coeffi- 
cient, a which is prescribed. The purpose is to show that with a 
suitably chosen a(x) - distribution, the equations will not only dis- 
sipate energy as the waves propagate, but the wave shape will stabi- 
lize as a realistic profile instead of progressively steepening as 
when the ordinary SWE are employed. 

The basic equations of the four equation system are summarized in 
Section 2, where the theory for the two equation method is also pre- 
sented. Section 3 summarizes the theoretical a(x) - distribution in 
steady jumps and what has been postulated for a non-constant form, 
periodic bore wave including the model used in this paper. The numer- 
ical model is discussed in Section 4. Section 5 gives the results of 
some laboratory measurements of inner surface zone waves used as input 
boundary conditions and to check the numerical experiments as discus- 
sed in Section 6. 
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2.  Theory - Basic Equations 

For non-permanent form propagating bores in a fixed reference 
frame, the four equation system employed by Svendsen and Madsen (1984) 
is (see Fig. 3) in conservation form: 

conservation of mass, 

%   + Qx »0 (2.1) 

conservation of total momentum, 

Qt + ( (Vdz + i<3d*)K = gdhx (z.z) 
-h 

conservation of mean energy, 

Et+ (z*\    - D (2-3) 

and the 

momentum conservation in core region, 

where: 

volumetric flowrate per unit width, 

Q(x,t) S [^dH (2.5) 

total water depth, 

d(x/t) «  h(x)+ •*(*,*) (2-fc) 

energy density per unit surface area, 
-1 

-h 
flux of energy through a vertical slice, 

rl 

loss of mean energy to turbulence, 

ft 

EU,*.)- f iu*<ia + -j[9*it (2.7) 
a vertical slice, 

turbulence, 

with u0(x,t) the velocity in the lower constant-velocity, core region 
beneath the turbulent wedge with u'w' the Reynolds shear stresses re- 
sulting from the turbulence and correlated by ensemble averaging. The 
subscripts x or t m^ans partial differentiation with respect to x or 
t. 

The primary assumption is that the horizontal length scale of the 
motion is much larger than the vertical scale so that the vertical 
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momentum balance is omitted and consequently a hydrostatic pressure 
distribution is taken. Normal turbulent stresses in (2.2) and bottom 
generated turbulence and shear stress are also neglected. 

To solve the four equation system (2.1-2.4) requires relating the 
turbulent shear stress, u'w' to the mean flow properties. The turbu- 
lence closure methods employed permit local nonequilibriura between 
turbulence advection and dissipation, but further details are beyond 
the scope of this paper. 

This system (2.1-2.4) with closure represents one possible exten- 
sion of the nonlinear shallow water equations (SWE) that includes the 
effects of turbulence. 

Another approach as followed in this paper is to only invoke the 
following two, depth-integrated conservation laws: 

conservation of mass, 

and 

conservation of total momentum, 

(2.10) 

Qt +  U + z 3d*)-  - 9d hx («•'») 
where: 

momentum flux density, ^ 

I(x,t) =   ( uM* [z.iz) 

and the effects of turbulence are now singarilary brought in through 
I(x,t) which itself only depends on the mean velocity profile 
u(x,z,t). All the assumptions in the four equation system are retain- 
ed.  The problem reduces to finding I(x,t). 

One possibility is to introduce a momentum flux correction coef- 
ficient, a(x,t) so that 

Now the problem is to find a(x,t) for non-permanent form, surf zone 
waves. When a(x,t) = 1.0, the SWE are recovered and the front face 
continuously steepens with no turbulence effects since the velocity 
profile remains uniform. In real propagating bores, water spills down 
the front face generating turbulence at the toe and creating a strong- 
ly non-uniform velocity profile, so that behind the toe a(x,t)>1.0. 

where 
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3.  Velocity and a-Distribution Models 

It is instructive to review some typical u(z) profiles and re- 
sulting a values as shown in Fig. 4. A log profile in uniform, open 
channel flow (Fig. 4b) gives a - 1.05 (Chow, 1955). The roller of a 
hydraulic jump causes a flow reversal (Fig. 2 and Fig. 4c) and sig- 
nificantly enhances the total momentum flux. The extreme case is a 
complete flow reversal (Fig. 4d) which essentially doubles the momen- 
tum flux created by each half. 

The velocity distribution u(z) employed for this paper is the 
similarity profile used by Madsen and Svendsen (1983) for steady 
j umps: 

where 

with us(x,t) at the free surface, and b(x,t) the width of the turbu- 
lent wedge. The choice of f(o) depended somewhat on the turbulent 
closure and a third order polynomial of the form 

•f(<r) = -A<r3+(i+A)crz fe.3) 

with A = 1.4 was found to give a good fit to measured mean velocity 
profiles for a wide range of inlet Froude numbers, Fj2 = u^/gd^, with 
uj.dj the entrance jump conditions. 

The a-distribution that results from the Madsen and Svendsen 
(1983) theory is found by putting (3.1-3.3) into (2.14) to give 

with d(x) part of the solution for the jump profile. Here ar(x) is 
the distribution for a steady hydraulic jump or a moving bore on a 
horizontal bottom in a relative coordinate system moving with the bore 
celerity (Fig. 2). Some typical distributions of ar(x) for Fj

2 = 3.0, 
3.95 and 8.0 are shown by the solid line in Fig. 6. 

For a fixed coordinate system (Fig. 3) and the ot(x) required by 
(2.11) and (2.13) it can be shown that 

«(*)-(£fG<r-l)+! M 
For example, when Fj2 = 3 (a weak jump) and at n/h = 0.3, then ar = 
1.2 and a = 3.2. The turbulence significantly alters the velocity 
profile and enhances the momentumn flux. 

For constant form steady jumps and propagating bores, the water 
depth gradually increases so that ar gradually rises above 1.0 to a 
peak value ctp within the jump at some distance xp from the toe then 

gradually  decreases  back  to  1.0  downstream.    This  is  shown 
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(a) u = CONSTANT    <b)   u(z) = LOGARITHMIC (o)   u(r) REVERSES   (d) FULL REVERSAL 
a = 1.0 11 * 1-05 a>1.0 a»1.0 

Fig.   4  Some velocity profiles and resulting momentum coefficients. 

constant 
form 

toe     £non lineo 
shallow wotei 

Fig. 5 Schematic variation of momentum coefficient a  with downstream 
water surface elevation n. (after Madsen, 1981) 

Steady Hydraulic Jump 
Modal No. 1 
Model No.2 

Fig. 6 Typical momentum coefficient distributions.  The solid line is 
for the hydraulic jump. The dashed line (Model No. 1) is for 
a propagating wave-like bore of nonuniform shape. Model So. 
2 is a variation not tested. 
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schematically in Fig. 5 (from Madsen, 1981) and for typical values in 

Fig. 6.  The theory was exercised for a large range of Fj2 values and 
least squares curve fitting employed to find that for constant form 
jumps 

<Xp(F,
z)= O.O9g.F,X+0.go2. 

and v   r"0.SF,*+0.05 1 F,H 4      (?*) 
Xp(F'^" Lo.0893F,*+O.«JF.t>4.      (3.7) 

But what is the ar(x) distribution beneath non-permanent form, 
surf zone waves? Experimental evidence (Svendsen, et al., 1978) sug- 
gests that surf zone waves have similar-shaped fronts but changing 
backs as the broken wave shoals and dissipates energy up a slope. 
Fig. 5 schematically illustrates that non-constant form waves have an 
ar(x) distribution that must return to 1.0 as n(x) also decreases. 
This suggests an ar-distribution similar to the steady, constant form 
jumps up to (Xp on the front side (from trough to near the crest) but 
then rapidly decreasing again on the back side. 

The initial, empirical ar-distribution chosen for this study was 
a parabolic shape as shown by the dashed line in Fig. 6 and labeled 
Model No. 1. The vertex (a„,Xp) was found from (3.6) and (3.7) as key 
variables in the parabolic distribution with one limb passing through 
the toe (x=0, a=1.0). A procedure to theoretically calculate the 
I(x,t) distribution can be developed from the four equation system of 
Svendsen and Madsen (1984). Model No. 2 (Fig. 6, dotted) was never 
tested. 

4.  Numerical Model 

An explicit, finite-difference code based on the Lax-Wendroff, 
2-Step algroithm (LW2S) has been developed for numerical solution of 
(2.10) and (2.11) using (2.13) and the parabolic model for the a(x) 
distribution. The code uses the method of characteristics and inter- 
polation subroutines to provide the needed additional boundary data. 
For example, when n(t) is specified on the incoming boundary, the code 
calculates Q(t) values at upper level time steps on the boundary as 
required by the LW2S algorithm. At the opposite, outgoing boundary a 
radiation boundary condition together with excessive numerical dissi- 
pation is introduced over a short reach to prevent wave energy reflec- 
tions . 

A large number of initial and boundary conditions with a(x,t) = 
1.0 giving known analytical solutions for simple cases were employed 
during development and testing to insure the validity of the code and 
given confidence in the results. 

The toe location was a key variable in the model since the para- 
bolic a-distribution began from this point. For a steady jump or con- 
stant form bore the toe is well defined since fixed in space. For the 
non-permanent form bore on a sloping bed, Svendsen and Madsen (1984) 
used as initial conditions a permanent bore starting seaward of the 
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slope with well defined toe.  They then propagated the toe point it- 
self at a celerity calculated by 

as a first order, upwind difference with j as the first grid point be- 

hind the toe. 

For surf zone waves the toe position is ill defined since the ap- 
proaching trough is a continuously varying curve. The toe position 
for these initial tests was heuristically taken midway between the 
trough (maximum negative n ) and the maximum front face slope. This 
was from observations in the laboratory that showed the toe point 
slightly up the curved trough. The toe position was then reesta- 
blished by this procedure each time step rather than propagating the 
initial toe position. This method proved to be expensive on the com- 
puter and caused problems as discussed in Section 7. 

To numerically calculate Fj2 and hence ap and xp to derive the 
a-distribution, (4.1) was employed to calculate C, but with j at the 
point of maximum slope.  The relative volumetric flowrate, Qm was 
found from 

and finally 

Qw = cd-Q i4..z) 

F* = %, C4-3) gd* 
with d and Q taken at the trough position to give an overall, repre- 
sentative value of Fj2. 

5.  ISVA Experiments 

Results of laboratory experiments at the Institute of Hydrodyna- 
mics and Hydraulic Engineering (ISVA), Denmark as performed by Hansen 
(1980,1982) were adapted for numerical testing. The experiments were 
made in a 60 cm wide, 32 m long and 36 cm deep (SWL) wave basin with a 
1:34 plane sloping beach. Twelve wave gages spaced throughout the in- 
ner surf zone monitored the change in wave height and shape. Of the 
twenty test runs available, one test with wave period, T = 2.22 sec 
and initial, "deepwater" wave height, H0 =» 10 cm was selected for 
numerical simulation. Within the surf zone, surface wave measurements 
averaged over 20 waves at the first gage (CHANNEL 00, Hi - 5.48 cm) 
became the boundary data as input into the numerical model. 

The experimentally measured results of this particular test (Run 
No. 201) are summarized in Fig. 7 for relative variation of wave 
height, H/Hi versus distance up the slope and in Fig. 8 for the wave 
shape at four selected locations. The last gage (CHANNEL 11) was 
located 2.8 m from the first gage (CHANNEL 00). Fig. 8 shows rapidly 
changing back side slopes of these waves whereas the front slopes are 
relatively unchanged. The wave is clearly of non-constant form. 
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RUN NO.   201 
mean n, ZUC definition 
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Fig. 7 Relative wave height versus position up the beach for run no. 
201. (courtesy J.B. Hansen, 1982) 

2 

Fig. 8 Variation of wave shape at four locations for run no. 201. 
(courtesy J.B. Hansen, 1982) 
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Further details regarding the facilities, instrumentation and 
data anlaysis procedures employed can be found in Hansen and Svendsen 
(1979). 

6.  Numerical Experiments 

The numerical experiments investigated the initial shape and wave 
height changes and celerity of the broken wave (labelled CHAN 00 in 
Fig. 8) as it shoaled and dissipated energy further up the beach. The 
detailed wave profile used as input boundary conditions is shown in 
Fig. 9. An arbitrary, smaller wave was placed in the "numerical" wave 
basin as initial conditions to avoid a completely "cold start" condi- 
tion. Mean water depth (MWS) from the laboratory experiments which 
included wave induced setup was used as datum. 

For an incoming wave length of about 2.5 m, the use of Ax = 0.025 
m gave roughly 50 grid intervals per wave for the staggered computa- 
tional mesh of the LW2S scheme. This resulted in very low numerical 
dissipation. The At » 0.014 sec was determined by using the maximum 
expected wave celerity together with the Courant number, Cr<1.0 res- 
triction inherent in all explicit numerical schemes. As a result, for 
a wave perod, T = 2.22 sec, N - 80 time steps correspond to about one- 
half a wave cycle. The shoreline (d = 0) is about 3.3 m from the in- 
put boundary or at a grid index j = 133. 

Fig. 10 is a baseline test result. It shows a wave propagating 
from left to right up the beach for the case when a(x,t) = 1.0 for all 
time and space and represents a solution to the SWE. The wave shoals 
and a secondary wave forms behind as the front face steepens. No mec- 
hanism exists in the numerical model to dissipate energy. The reason 
for the formation of the secondary wave is unclear but may be due to 
the original input wave shape (Fig. 9); the nonlinear advection term 
in the SWE creating harmonic components or, there being no real mec- 
hanism in the model to dissipate higher wave number energy. Running 
longer caused the scheme to go unstable. Fig. 11 demonstrates the use 
of a numerical smoothing filter on these results where 

<; - *4. +o~*rK + Til, M 
with Y » 0.125, and using the filter every other time step (NR=2) or 
every ten time steps (NR=10). The use of this filter smoothed out the 
smaller oscillations and permitted the scheme to run beyond a full 
wave cycle. The crest elevation at N=80 is 0.063 m and 0.046 after 
filtering. This filter behaves as an energy disslpative mechanism to 
remove higher wave energy (like turbulence) and changes the front face 
slope but not the phase speed of the wave. 

Figures 12 and 13 show analogous plots but now with Model No. 1 
used for the parabolic a -distribution beneath the wave crest so that 
a(x,t) varies in space and time. The effect of broken wave generated 
turbulence alters the velocity profile to enhance the momentum flux 
beneath the wave crest and behind the toe of the bore. Fig. 12 in- 
cludes the numerical filter (NR=10) to give a smoothed, clearer pic- 
ture of the wave shape changes.  The wave is seen to initially shoal 
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Boundry Wave Condition 

NUMERICAL WAVE BASIN 

Initial Conditions 

Fig. 9 Initial conditions and input wave boundary conditions for 
numerical simulation. 

Fig. 10 Basline numerical test results with no turbulence (a=1.0) for 
the five time steps. N=80 equivalent to one-half wave 
period. A 2.22 sec wave with initial height of 0.055 m moves 
up a 1:34 slope. 
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Fig. 11  Same as Fig. 10 at N=80 except includes use of numerical 

filter every other (NR=2) and every ten (NR=10) time steps. 

Fig. 12 Numerical test results with parabolic ct-distribution (Model 
No. 1) for 10 different time steps. 
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Fig. 13 Same as Fig. 12 at N=80 including raw results and the effect 
of numerical filters. 

Fig. 14 The effect of different widths of the parabolic, a- 
distribution model on the wave shape at N=80. Double width 
(XWF=2) and trebled width (XWF=3) shapes are shown below. 
Also shown is the laboratory measured wave shape as thick 
solid line. 
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in crest elevation (while dissipation takes place) and the trough ele- 
vation also rises. This is felt to be due to the initial conditions 
in the numerical basin. Beyond N=70, the numerical wave has esta- 
blished some type of equilibrium within the basin and dissipation 
dominates. Fig. 13 shows the wave shape after N=80 time steps (one- 
half period) and demonstrates that high wave number oscillations 
(solid line) are still present when no numerical filtering is employ- 
ed. Clearly, Fig. 13 reveals that the a-distribution model must be 
responsible for the wave crest elevation reduction for now ^max = 
0.045 m as compared to TVax = 0.063 m for the SWE (a =1.0) and the un- 
filtered results. It is also evident in Fig. 13 that additional 
numerical smoothing actually increases the front face steepness while 
smoothing out the higher wave number oscillations. Thus although both 
the a-distribution mechanism and the numerical smoothing effectively 
result in energy dissipation, the general wave shape changes are pri- 
marily controlled by the a(x,t) model. 

This is demonstrated further in Fig. 14 for three different 
widths of the a-distribution model. The results again show the wave 
shape at N=80 with numerical filtering included. The width of the 
parabolic a-distribution is arbitrarily doubled (XWF=2) and trebled 
(XWF=3) and this results in a significant change in both the crest 
elevation and slope of the front face. The a-distributions are also 
shown below the wave with the toe located as discused in Section 4. 
Widening the a- distribution is seen to flatten the front shape. 
Entirely different results would be expected if the initial toe posi- 
tion were itself propagated as part of the solution procedure. 

The thick solid line in Fig. 14 is from the measured laboratory 
results at a comparable position in space. The wave profile in time 
was converted to a space profile using the celerity of a local mea- 
sured bore wave as reference. This wave was taken from the CHANNEL 05 
position (see Fig. 7) so that the comparison is not exact. The mea- 
sured shape in Fig. 14 is only included to give some rough idea of how 
the numerically calculated wave compares with that reported from the 
laboratory measurements. 

7. Summary 

This paper summarizes initial efforts to model surf zone wave 
shoaling and energy dissipation through the use of a semi-empirical, 
momentum correction coefficient distribution, a(x,t) in the nonlinear 
SWE. The qualitative trends are correct in that energy is lost and 
the wave shape stabilizes rather than steepening. The numerical model 
can be improved by independently propagating the initial toe position 
as part of the solution procedure and by the development of a more 
rational theory for the ot(x)-distribution beneath the wave. In addi- 
tion, many more waves need to be propagated through the numerical 

basin to reach an equilibrium state as found in the laboratory basin 
in order to make a proper comparison. Some additional energy loss 
occurs in boundary layer shear that should also be accounted for in 
the numerical model. 
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Further research is needed to theoretically determine the appro- 
priate a(x,t)-distribution. 
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