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ABSTRACT 

The shear stresses and the associated friction coefficients at 
the interface and at the bed of an arrested saline wedge have been 
studied experimentally together with the detailed flow structure. 
Interfacial stresses, evaluated from hot film anemometer measurements 
and actual velocity profiles, agree well with those based on the 
integration of the equations of motion while the simplified one- 
dimensional analysis gave considerably higher values, It_was found 
that both the average interfacial friction coefficient, f and the 
average bed friction factor, f are best correlated with the 
dimensionless number, ReFr2, where Re and Fr are the Reynolds number 
and the non-densimetric Froude number of the flow respectively, and 
with the relative density difference, Ap/p, The results are presented 
in two families of curves with Ap/p as a parameter. The scattering of 
data points is minimal and the agreement with the results of some 
previous laboratory investigations and field data is good. 

1.  INTRODUCTION 

Shear stresses at the interface and at the bed of arrested or 
quasi-stationary saline wedges develop as a result of the flow pattern 
which is generated by the dynamic interaction of fresh and salt 
water. These stresses, noted by T. and T respectively, as well as 
the associated coefficients, f* and r , have been extensively studied 
in the past not only for saline wedges but also for other types of 
two-layered stratified flows (3). In particular, the frictional 
resistance at the interface and the related flow dynamics constitute 
two of the most intricate and most important aspects of stratified 
flows.  A reasonable evaluation of the interfacial friction may lead 
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to a quantitative model, since stratified flow systems are controlled 
by gravity, friction, and inertia forces; they can, therefore, be 
readily analyzed to various degrees of approximation provided that 
suitable expressions for the friction forces at the interface and at 
the solid boundary are introduced. Two typical examples of such 
models are the one-dimensional analyses for uniform density underflows 
(6) and for arrested saline wedges (13). 

In an earlier paper the authors reviewed studies on stratified 
flows prior to 1978 (4, 10) • It was found that results obtained 
through various theories and equations differed enormously, and that 
the scattering of experimental data points in certain studies was too 
wide for the formulation of any reliable universal law (7, 8). The 
discrepencies were attributed to the restricting assumptions and 
conditions of each study and to the limited range of variation of the 
governing parameters while the scattering of data points suggested 
either that an inadequate number of independent variables was taken 
Into consideration or that these variables were not properly separated 
in the dimensionless correlation parameters for their effect on the 
friction coefficients to be sufficiently displayed. It, moreover, 
appears that turbulent exchange through the interface may take place 
to a degree sufficient for the generation of Reynolds stresses while 
the flow maintains its stratified appearance (11). 

The authors, in their first attempt to derive a univeral 
functional relationship for the interfacial friction coefficient, 
conducted extensive experimental investigations in a closed 
rectangular duct where fresh water was flowing over a quasi-stagnant 
salt water layer at various salinities (4, 10). The analysis of the 
test data was based on a one-dimensional steady uniform flow model 
similar to that developed by Schijf and Schoenfeld for open channels 
(13). Attempts to correlate fj with the Reynolds number, the 
densimetric Froude number, and the Keulegan number resulted, like in 
several earlier studies, in wide scattering with no consistent trend 
of variation.  The Keulegan number is defined by the Eq.: 

where V is the local average velocity in the moving layer, p is the 
density of the fresh water, Ap is the density difference between fresh 
and salt water, g is the acceleration of gravity and v is the 
kinematic viscosity assumed to be the same for both fluids. 

The scattering was minimized and a consistent trend of variation 
was achieved when f^ was plotted against the parameter ReFr2, where Re 
and Fr are the Reynolds number and the non-densimetric Froude number, 
with Ap/p as an independent parameter. The family of curves, thus 
obtained, agrees reasonably well with reanalyzed data obtained by 
other Investigators and with one data point from the Mississippi 
river^ In the present study, a similar correlation was achieved for 
both f. and f for saline wedges. The interfacial shear stresses were 
evaluated both directly from hot film anemometer measurements and from 
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an integration of the equation of motion over each layer along the 
same line used by Keulegan (7, 8). 

2.  THEORETICAL BACKGROUND 

The interfacial friction coefficients, f^, have been evaluated by 
the following four different approaches: 

2.1 Direct Measurement Approach 

This approach was based on directly measured velocity profiles 
and Reynolds stresses from which the interfacial shear stress was 
computed by the equation: 

Ti = U dy " pu'v' ^ 

In this equation, u is the local temporal mean velocity, y is the 
direction normal to the flow direction, x, uf and v' are the 
instantaneous turbulent velocity components in the x and y directions 
respectively, and u is the dynamic viscosity. From Eq. 2 the local 
interfacial friction factor, fj, is defined as: 

8T 

f, - (3) 1     2 
pVi 

where Vj Is the average fresh water velocity (Fig. 1). 

2.2 Integration of the Equations of Motion 

In this approach the equations of motion were integrated for each 
layer in the vertical and in the horizontal directions over the 
salinity intrusion length. 

The general two-dimensional equations of motion and continuity 
for steady flow have the forms: 

*     -v      dz   , A   , /3T    3T \ 

3x    3y   g dx   p 3x  p ^3z    3y  ' K  ' 

and 

3x ' 3y 4*+£-0 (5) 

where, refering to Fig. 1, u and v are the local temporal mean 
velocities in the x and y direction respectively, z is the horizontal 
direction normal to x-y plane, zQ is the bed elevation 
and T and T are the shear stresses in the direction x, acting on 
planes normal to z and y directions repectively. 



SHEAR STRESSES 2477 

Salt Water Tank Salt Water Tank 
Partial Intrusion Complete Intrusion 

Fig, 1.  Definition sketch of an arrested saline wedge. 

A corabinaton of Eq;>. 4 and 5 leads to: 

3u , a(uv) 
3x     i)y 

dz /3T    3T , 
 o _ J_ _9p  1/  zx    yx1 

dx   p 3x  pi dz dy (6) 

The last equation is first integrated over the cross sectional area of 
each layer separately and subsequently over the length of intrusion. 
In the second integration two cases had to be considered: 1) the case 
where the depth near the salt water basin is critical and the salinity 
intrusion length attains its maximum value, L. and 2) the case where 
the fresh water depth near the basin is larger than critical, whereas 
the intrusion length, L0, is less than L^. In all experiments a layer 
of fresh water was formed over the salt water basin. As long as the 
depth of that layer was smaller than the critical depth of fresh water 
at the channel entrance, it had no effect on the salinity intrusion 
which attained its maximum length, L*; otherwise, the actual intrusion 
length was equal to the distance from the toe of the wedge to the 
point where the fresh water depth is equal to that over the basin. 

2.2.1.  Complete Intrusion. 

2.2.1.1  Fresh water layer 

The pressure distribution in that layer is given by 

P = PQ + Pg(h " y) for y > hg (7) 

where h = hj + h (Fig. 1) and where the vertical direction y is 
measured from the bottom. Eq. 6 is next integrated over the cross 
sectional area bhj  Setting: 
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oVi A! =  ||u2dA (8) 

where a is the momentum flux correction coefficient, neglecting the 
velocity variation in the z direction and taking into consideration 
the Leibnitz rule, integration of the first term of the left hand 
member yields: 

b    h 

f 2J /  , 2 dvl      JU    2 dh /  dz /  3u  ,   a ,,    1  ,Ir? dh , ,„   s ,,.* 

)-± J h9rdy = 2bhl^"bu <&   bvisr (9) 

2     s 

interface, respectively. Likewise: 

b    h 
(2       f dh 

dz   l(uv)_ w
2 dh _  2  s _ ( 

/ , J 3y dx    l dx     is 

2     s 

where v  is the net rate of salt water entrainment.  The vertical 
velocity at the free surface is: 

vh = «H <"> 

and the same velocity at the interface was taken as: 

The integrated terms of the right hand member of Eq. 6 are: 

C  2  f       dz dz 
 o 

" J    h ^ 
2    hs 

(12) 

(13) 

b h 

2 s 

h b 
, f f2 3T        2h,T 

s 2 
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dz 
9T 

•ibT. 
P  i 

(16) 

where T is the shear stress at the sidewalls.  Eq. 6 obtains thus the 
form: 

2 

i£ + _« ^ + _JL , T + 
dx  2g dx  pgh! VTi 

2T h, 

ghi 
(17) 

where H is the piezometric head, zn  + h. and -r—  is, therefore, the 
o    7     dx 

slope of the piezometric line.  The entrainment velocity is equal to: 

J^s 
bL, 

(18) 

where q is the rate of salt water entrainment over the saline 

wedge. The latter has been given by Keulegan (8). In the analysis 
of data, the term V.vg/gh, was found to be of minor importance with a 

maximum effect of 54, Because of this reason and of the fact that 
entrainment takes place not continuously over the interface, but at 
isolated spots in the form of breaking of interfacial waves, it was 
neglected in the subsequent analyses. Expressing, next, T by: 

2 
pVi 

(19) 

the following equation for T, is obtained 

"7 = "g(h h)iS 
s  dx 

(h - h ) 

2 
dV! f ,(h h )Vi 

4b 
(20) 

which, integrated for -L. to 0, gives: 

pVz 
o dH 

V^ 

ah 
o 

2L, 
12 

f h 
wo o 
4b 13 (21) 

where TJ and dH/dx are the average values of x. and of dH/dx over the 
wedge and where Ij, 12 and 13 are the following dimensionless 
functions: 
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o o i 
(22) 

dVi 
I2 = 

V^    d 
TfHli; (23) 

i        vl   2    u        h 
(24) 

For the evaluation of these integrals, the following dimensionless 

equations for the interface, developed by the authors and Mehta and 
based on Schijf and Schoenfeld's model (11, 13), was used: 

,h<! ^ IT     h<s  /      2/3\"l2  r   hs  /      2/3vl I 
x _  sc  (I scj '1 L sc ' 'S) 

10 

"t/3 2/3 
6(F ') ' + 3(F ') ' +1 

o o 

•»/3        2/3 
(F ')    + (F ') '  +1 

+ 1 
"t/3 2/3 

6(F ') '  + 3(F ') '  +1 

)h is the densimetric F 
The three integrals obt 

r     2       V3      2/3   1 
2 5(F ') + 6(F ') ' + (F ') ' +1 L   o        o o        J 

(25) 

where F ' = V /g(Ap/p)h is the densimetric Froude number with V and 
h defined in Fig, 1.  The three integrals obtain thus the form: 

r V3 2/3        1 
3    6(F   ')        + 3(F   ')        +1 

I       o o J 

-2/3 
(F   ')     '     -   1 

(26) 

(27) 

0.29 
13 

13/6 2 17/6 
5 + 255(F   ')     '     - 221(F   ')    - 39(F   ')     ' 

2/3' 
1   -   (F   ')   ' 

it/ 3 2/3 
(F   ') +  3(F   ') +  1 

(28) 
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2.2.1.2 Salt water layer 

A similar integration of Eq. 6 over the cross sectional area 
of the wedge, A = b*1 > with the pressure this time described by the 
equation: 

p - p + (h - h )pg + g(p + Ap)(ho - y) (29) 

gives: 

Ap 
d(h + z ) 

g(p + Ap)h   p + Ap  dx  p + Ap      dx 

d(VlV  Vs 1 s •+ •—• = 0 (30) 
ghs   dx    ghg 

where $ is the momentum flux correction coefficient for the lower 
layer given in terms of V^ by: 

SV^A - Mu2dA (31) 

and where the sidewall friction has been neglected since, due to the 
reversal of flow direction, its overall effect is expected to be 
negligible • Integration of Eq. 30 from -L* to 0 gives: 

T«  T  gh -nj    g^§ .  P^h  dZ 

•* 2    sc       2 
pV    pV   V 2V L V 

2     22  ax        2SC       2     dx 

o i 

Vlc 
V 

(32) 

where TQ is the average bed shear stress over the length of intrusion, 
dz /dx = -S is the average bottom slope, h,  - h - h   is the 
critical  depth  of  the  fresh water  layer,  and e = V./V .   The 
term V.v /gh has again been neglected for the aforementioned reasons 
while the integral Ii, is: 

IT d^7] (33) 

-i °      1 

which, on the basis of Eq. 25, becomes: 
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2/3 
1 - (F ') ' 10( 

"»/3 2/3 
F ') ' + 4(F ') ' + 1 

V 6(F •) ' + 3(F ') 
2/3 

') '  + 1 

(34) 

The analysis presented so far is similar to the one used by 
Keulegan (7, 8) with the following differences: 1) A more detailed 
analytical equation for the wedge profile has been used instead of one 
single experimental curve and, 2) the actual measured values 
of a and g for each experiment were used, instead of the constant 
values of a  = 1.028 and 6 = 0.146 used by Keulegan. 

2.2.2 Partial intrusion 

In several experiments, the fresh water layer at the downstream 
basin was larger than h. - in which case the salt water depth at the 
downstream end of the cnannel, h , was smaller than h (Fig. 1). In 
these cases the following simplified form of Eqs. 21 and 32 was 
derived and used:  First, Eqs. 20 and 30 are written in the form: 

(35) -li. 
2 

- 
ghl dH   oho dVl   fwhlVl 

2  dx  V   dx        2 
V        °        4bV 
o                 o pVo 

2 

T 
0 

2 2  dx 
+ 

(^)ghs   dhs | B(i^£)y 

2      dx        2 

2 
dfv. h ) 

dx 
pv pv„ V V V 

(36) 

where dz /dx in Eq. 32 has been neglected as much smaller in 
comparison to dh /dx and where the wall friction coefficient f„ has 
been introduced by the Blasius equation: 

f = 0.316 
»  Re0.25 

where the Reynolds number, Re is: 

4V,R, 
Re 

'l1 hi 

(37) 

(38) 

and 
bhj 

(b + 2hj) 
(39) 

q. 35 obtains thus the form: 

pv 
2 dx 

ah dVi  o  l 

V dx 
0.0559. •h2 

i ?c o\V h 1-"  \ o o 

(b + 2hj) 

hi 
(40) 
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Averaging of Eqs. 36 and 40 over the actual length of salinity 
intrusion, L , as in the case of full intrusion^ but considering h.and 
h constant and equal to their average values h, and h , leads to the 
following equations: 

1 

Pv„ 

dH 
dx 

ah 
so  0.0559, 

1.25 oW h 

(b + 2hi) 
(41) 

and 

2 
pv PV- 

^s 

2 

dH 
dx ' 

(AP) 
v P^ 

2 
2V 

h2 
SO (1+A^ (42) 

where bars indicate average values over the length L . For a direct 
evaluation of the average stresses T^ and T , given either by Eqs, 21 
and 32 or by 41 and 42, a reliable measurement of the average slope of 
the plezometric line, dH/dx, is required - as was done earlier by 
Keulegan (7, 8), This has been found to be very difficult, since the 
head loss over the effective length of the flume is of the order of a 
few tenths of a millimeter. Attempts to measure that head loss 
optically through a laser beam required an excessively long time of 
measurement, due primarily to the slowness of achieving equilibrium in 
the two static tanks, and to the very long period of oscillation of 
the water level in these tanks• Moreover, the above equations are 
quite sensitive to dH/dx so that a measurement error of the order of 
10% may cause an error in T^ of the order of 50% (5). This difficulty 
was bypassed by introducing a linear relationship between T. and T • 
Indeed, the shear stress distribution within the wedge is given by the 
equation. 

_9T 

3y 9x p + g(p + Ap)z + (p + Ap>= (43) 

The velocity head is very small and can be neglected,  Eq. 29 then, 
for p gives: 

9y 
dH -L.   ( K   ^ 

3(h + z ) 
s o_ 
3x 

(44) 

The free surface slope, dH/dx, is very small, as discussed, and can be 
considered as constant. Also, apart from two relatively short 
segments around the wedge toe and the critical section, the interface 
is very nearly a plane surface, and d(h + z )/dx is also very nearly 
constant. Therefore, it is reasonable to assume linear variation 
of T with y within the wedge.  It follows thus from Fig. 1 that: 
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(45) 
si 

where h , is the distance from the interface to the point of maximum 
velocity in the wedge. It was assumed next that X is constant over the 
wedge - in which case Eq. 45 holds also for the average stresses T^ 
and T„, that is: 

TJ + T = XT, 
i   o    i 

(46) 

Eliminating dH/dx from Eqs. 41 and 42 and using the last relationship, 
the following equation is obtained: 

T,  (lY^gh   + 20 (l +-^)e2Vi lh. hi - 2<xhh V2 
i _ IV p/ a so *_\. p/   1oJ lo 1 o s o 

Pv„ 

0.0559 

2 
V  h, „ 
o lo 

(b + 2hj) 

n (Xhi + h ) 
(47) 

All the terms of the right hand member of Eq. 47 are either known or 
can be directly measured. The maximum measurement error of X was 
estimated to be about 15% (5). With Tj computed from Eq. 47, TQ is 
readily evaluated from Eq. 46. dH/dx could be eliminated in the same 
way from Eqs. 21 and 32, valid for complete intrusion. However, after 
a few trials for the latter case, it was found that Eqs. 41 and 42 
could be used for both partial and complete intrusion. These 
equations have been used for the analysis of all data. 

2.3 One-dimensional Energy Equation 

This equation, developed by Schijf and Schoenfeld (13), is based 
on the energy conservation principle applied separately to each layer 
and on the assumptions of one-dimensional flow, infinite width, and 
negligible entrainment through the interface. For zero net flow within 
the wedge, the average velocity is also zero and, therefore, for the 
one dimensional approach, T has to be taken also as zero. The final 
form of the equation is: 

2h 
 o 

5(F ')2 
2 + 3(F ') 

2/3 
•y <F.') 

V3 
(48) 

which gives the average interfacial friction factor if the total 
intrusion length is measured. If the actual intrusion length, L , is 
less than L*, the latter can be computed graphically from Eq. 25, 
where hsc is known and equal to h u   _ (F 1)2/3] (n). 
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2.4 Simplified Equations of Motion 

This Is a combination of the last two approaches and its main 
objective was to investigate the effect of the assumption of zero bed 
shear stress and zero wall stress, used in the one-dimensional model, 
on the interfacial shear. For T =0,X=l,f =0 and 
B = 0, Eq. 47 reduces to the approximate form: w 

Pv„ 

(i£)ghlh v p;  1 so 

2 
2V h 

ah 
(49) 

3.  BASIC RESEARCH EQUIPMENT 

The experiments were conducted in a variable slope plexiglass 
flume 20 m long, 46 cm wide, and 46 cm deep, constructed at the 
Coastal Engineering Laboratory of the University of Florida. This 
flume, outlined in Fig. 2, discharges into a 3 m by 1.53 m tank 
supported on another 3 x 3 x 0.75 m3 tank. 

P = Pump F = Flume 
J = Jock R = Return Pipes 
T = Tank 0 = Orifice 
Hs Honeycombed V = Valves 
G= Gate 

Fig. 2.  Outline of basic experimental apparatus. 

The channel is connected at its upstream end to a 2.31 m by 0.45 m 
head tank where the fresh water is pumped into from the fresh water 
tank and where turbulence dampens out through a honeycombed section. 
The water circulation system consists of an axial flow pump, of two 
pipes with either one or both in operation, depending on the required 
discharge, and of all the necessary orifice meters, valves, gates, 
pressure taps and manometers. The maximum discharge is about 115 
1/sec. 

The channel and head tank are supported on a steel frame 1.2 m 
high, which rests on two hydraulic jacks - one at the center and the 
other at the upstream end of the flume. Through a gear-chain system, 
the central jack could be moved up and down at a distance equal 
to -j- that of the upstream jack. The •=• -inch thich plexiglass wall of 
the flume forms a channel with its flanges, fortified with stiffeners, 
directed outwards.  To this steel frame, rails have been placed on 
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each of the upper two flanges for the support and smooth movement of 
the instrument carriage. The downstream end of the channel is 
connected to the salt water tank through a five centimeter long thick 
rubber forming a flexible and waterproof hinge. A water-tight 
vertical plexiglass gate separates the flume from the salt water 
tank. That gate can be raised and lowered mechanically by a vertical 
threaded shaft and a circular threaded disc supported on an 
independently fixed frame. A second gate at the downstream end of the 
salt water tank regulates the water level in the latter. The outlined 
system of flume and tanks is supplemented with the necessary pipes and 
valves for proper operation and control. 

The measuring instruments - that is, the hot film anemometers, a 
specially designed salinity probe, and the point gages - are supported 
on the aforementioned carriage, which is collapsable sidewise to 
permit its movement over the cross bars of the flume without removing 
the instruments. 

4.  EXPERIMENTAL RESULTS 

After the necessary preparations and instrument calibration, each 
experiment was started and continued to a point where reasonable 
steady state conditions were established. Entrainment caused a 
gradual erosion of the salt water layer as a result of which salt 
water had to be periodically supplied from the preparation tank to the 
salt water basin. Space limitations do not permit a description of 
the detailed procedures of experimentation and calibration, which can 
be found in ref. (5) and in a forthcoming report. The measurements 
took place immediately after the steady state was achieved and lasted 
for about one-half hour, during which no measurable change in the flow 
conditions occurred. The primary measurements consisted of velocity 
and density profiles - with points more densely located around the 
interface. The instantaneous velocities were recorded on tapes from 
which the Reynolds stresses were subsequently computed. A total of 74 
experiments were conducted with fully developed turbulent flows. The 
relative density difference, Ap/(p+ Ap), in these experiments ranged 
from 0.008 to 0.093. In such flows the velocity distribution in the 
neighborhood of the interface was found to be logarithmic and quite 
similar to that near solid boundaries. This is in general agreement 
with results from earlier studies (2, 9) but with major differences in 
certain important aspects. The velocity distribution laws and the 
flow structure around the interface is the subject of another 
forthcoming paper. It was found that the salinity distribution around 
the interface follows closely the law: 

% 1 _ 1 
Ap    2 

(y- h tan\-wr (50) 

where p. is the local density, y is the distance from the bed, h is 
the depth of the density interface, and <5 is the thickness of the 
interfacial zone, as defined in Fig. 3. 
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Fig. 3 Definition sketch for the Interfacial zone. 

As determined in an earlier study by the authors (4, 10), it was 

again found that the best correlation is obtained if f^ 
any one of  the outlined four methods,  is plotted 

dimensionless  number 

parameter, where: 

ReFr2 with  Ap/(p + Ap) as  an 

4V 
Re = • 

l«h 

2 

— 

determined by 
against  the 
independent 

(51) 

and where R, is the hydraulic radius of the fresh water layer, 
parameter ReFr2 can be written in the form: 

The 

where: 

4V 
(52) 

IR = - 
10 

"t/3 2/3 
6(F ') ' + 3(F ') ' + 1 

(53) 

In Fig. 4 the results for four of the eight ranges of Ap/(p + Ap) 
computed by all four approaches are shown with the average value of 
Ap/(p + Ap)  for each range indicated at the insert.  The results from 
all four approaches can thus be compared.   Here the interfacial 
friction coefficient is defined either as: 

_2 
pVi 

(54) 
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8T 
f, =-J- (55) 1    -2 

pVi 

with T, computed from Eq. 47 for the second approach and from Eq. 49 
for the fourth approach. In the third approach IL was evaluated from 
Eq. 48.   The comparison of these four sets of data leads to the 
following conclusions: 

First, as in the earlier study by the authors (4, 10), the 
scattering of data points around each curve is minimal for a flow of 
this type. Secondly, there is a very good agreement between the data 
obtained from the first two approaches - that is, between the data 
based on direct shear stress measurements and those based on the 
integration of the equations of motion. These data constitute the 
lower family of curves. Thirdly, there is an equally good agreement 
between the results based on the two approximate approaches and which 
constitute the upper family of curves (dotted lines). Finally, a 
comparison of the two families of curves indicates that both 
approximate approaches give values of f, considerably higher than the 
corresponding values obtained either by direct measurments or through 
the equations of motion. This difference is indicative of the effect 
of neglecting the bed shear stresses. It follows that f"i, as 
determined from Eq. 48 through calibration, that is, by measuring L^ 
either in the laboratory or in the field (11), can be used as a 
convenient virtual friction coefficient for modeling purposes; it is 
not representative of the true shear stress at the interface, however. 

The above conclusions hold also for the case of Ap/(p + Ap) equal 
to 0.0225, 0.0355, 0.0485 and 0.082. For this reason the data for 
these cases are not reproduced in detail; instead, the summary of all 
eight curves based on the first and second approach is given in Fig. 
5. 

In Fig. 6 the curve corresponding to Ap/(p + Ap) = 0.0225 has 
been reploted together with reanalyzed laboratory data by Abraham and 
Eysink (1) and with one field data point from the Mississippi estuary 
(11). The agreement is quite good. This sugges t that until the 
curves of Fig. 5 are implemented with field data, they can be 
tentatively extrapolated following the extrapolation of the 0.0225 
curve of Fig. 6. 

In Fig. 7, the results for Ap/(p + Ap) = 0.0225 are compared with 
resent results obtained by Powell for flow of fresh water over a 
semistagnant deep water layer in an open conduit and for a relative 
density difference close to Q.024 (12). When plotted against the 
Reynolds number only, these two sets of data deviate strongly (Fig. 
7a); however, they appear to closely agree when they are plotted 
against ReFr2. In fact, the drop of the curve for low values 
of ReFr2 agrees with the trend observed in the authors' experiments. 
Thus, Powell's point for Re*22000, which in his original diagram (Fig. 
7a) seems to be in error, is in fact in agreement with the general law 
derived from this study. 
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The bed friction coefficient, fQ, defined as: 

8T 

0 ~ _2 
pV! 

(56) 

has been determined from Eq. 46 where T\ = x. was computed from Eq. 54 
for values of f^ taken from Fig. 5. The value of X was determined for 
each experiment and the results are shown in Fig. 8. X appears to be 
a function of the number ReFr2 only while for values of the latter 
smaller than 100, it is essentially constant and equal to about 1.4. 
The results are plotted in Fig. 9 as a family of curves similar to the 
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Fig. 9.  Bed friction coefficients, fQ. 

5.  SUMMARY AND CONCLUSIONS 

Laboratory experiments and theoretical analyses led to a new 
relationship linking the friction coefficients at the interface and at 
the bed of arrested saline wedges to the pertinent flow parameters and 
fluid properties. The relationships are presented graphically as a 
family of curves with ReFr2 as an abscissa and the relative density 
difference, Ap/(p + Ap), as an independent parameter. The scattering 
of data points was minimal and much lower than in earlier studies on 
the subject. In the present correlations the number ReFr2 

incorporates the friction, gravity, and inertia forces, which control 
the main flow, while the buoyant forces, which are responsible for the 
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density stratification and the asociated flow pattern have been 
separated and introduced through the parameter Ap/(p + Ap) • 

This study indicated that values of f^ evaluated through an 
integration of the equations of motion closely agree with values based 
on measured velocity profiles and Reynolds stresses. Values of f* 
obtained from the simplified and frequently used Schijf-Schoenfeld's 
one-dimensional analysis were shown to be higher than corresponding 
values based on the previous two methods, 
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