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SUMMARY

A method of calculating nonlinear wave induced forces and moments on
piles of variable diameter is presented. The method is based on the
Morrison equation and the linear wave theory with correction parameters
to account for convective inertial effects in the wave field. These
corrections are based on the stream function wave theory by Dean

(1974). The method permits one to take into account the added wave
force due to marine growth in the intertidal zone or due to a protective
Jacket, and can also be used to calculate forces on braces and an

array of piles.

INTRODUCTION

Design of coastal structures such as pilers requires calculation of
wave induced forces on piles. The basic methodology is based on the
application of the Airy theory in the Morrison equation. This has
been a very useful tool, but the Alry theory does not account for many
of the nonlinear dynamic and kinematic effects which finite amplitude
waves exhibit., Several investigators have used various nonlinear wave
theories and corrections to linear theory. The stream function wave
theory by Dean (1965) has been determined to be one of the most originally
accurate theories (LeMehaute and Dean, 1970). It has been used by
Dean (1974) to determine wave forces on piles. Dean has also used
stream function theory to develop a number of simple graphs which give
the total wave force and moment about the mudline on pile of uniform
diameter (SPM, 1977).

Many coastal engineering applications require calculation of the wave
loading distribution on the pile. On a pier, the top of the pile is
in some cases fixed and therefore the moment about the mudline is not
a useful parameter, the designer requires the load distribution.
Furthermore, the geometry of many marine structures are complicated by
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Figure 1. Definition Sketch for a Pile with Three Diameters.
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The force on an array of piles can be determined by calculating the
forces at various phase angles.

The methodology therefore permits the engineer to calculate wave
forces on piles taking into account many of the physical properties of
waves observed in nature and the laboratory as well as special circum-
stances which must be addressed in practical design problems. The
force and moment corraction factors are primarilly greater than unity
and therefore will yield forces and moment which are greater than
those calculated by linear theory. Where force and moment correction
factors are less than unity, the correction was retained as unity for
the sake of conservatism.

FORCES ON CYLINDRICAL PILES: BASIC FORMULATION

A cylindrical vertical pile subjected to a time dependent horizontal
velocity, u(t), has a force, f, per unit length of cylinder which is
the sum of a drag force, fD’ and an inertia force, fI:
ﬂDZ du

£=f + £ =%pC) ulu| + p TS 45}

where p is the dens&&y of sea water, D is the pile diameter, u is the
particle velocity, T is the particle acceleration, CD is the drag
coefficient, and Cm is the inertia coefficient.

When a cylindrical pile is subjected to a water wave, one considers
that these equations hold true, provided u(t) is the horizontal component
of the velocity field at the pile location as if the pile did not
exist. The deformation of the velocity field by the pile, wave diffrac-
tion, the effect of the vertical velocity component, the vertical
acceleration component and the elasticity of the pile are neglected.

The equation is commonly called "Morrison's equation".

The total force, F.,, on the pile is determined by integrating the
unit forces from the sed floor to the water surface, SG'

Sq
Py o= 10 dz 2

where subscript 6 refers to phase angle.

Forces due to nonlinear waves over piles of variable diameter,
D,, can be calculated using equations (1) and (2) using expressions
for u and du/dt from the linear wave theory and adjusting them according
to results obtained from the nonlinear wave theory. Nonlinear corrections
are taken from the stream function theory as presented by Dean (1974).
Two basic corrections are made: the asymmetric free surface correction
and the nonlinear correction to the wave field.

Figure 1 shows a pile of three diameters, D, D2 and D,. The
total force, F,,, acting from the sea bottom (z=0} to“the elévation of
the free surface (z=Sa) is given by:
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z S

F o=l em) da+ £2 £y dz 4 1O
T 0 1 z 2 z

1 2
where F, = total force on the pile and f(Di) = total force per unit
length acting on pile diameter Di'

f(D3) dz (3)

Graphs can be constructed which integrate unit force and moment
from the sea floor to an elevation z,. Then equation (3) can be

written. i
£ %) Z
FT = fO f(Dl) dz + fO f(DZ) dz - fO f(DZ) dz +
Se Zy
fo f(D3) dz ~ fo f(D3) dz (4)

This expression can be written:

F, - 1?(1)1)|Z1 + F(D)) I22 - F(D,) |zl + F(D3)lSe - F(D,) lzz (5

where F(D.)I ; = wave force acting on a pile of diameter Di from the
sea bottom td a level z;.

Use of equation (5) requires evaluation of the force F(D )Izl on 4
pile of arbitrary diameter, D,, and elevation above the bottom, z, .
This is done using the linear wave theory with the appropriate correction
coefficients in order to account for the effects due to the nonlinear
wave theory. This gives:

2 ]

H i ' H

=l ——— —— ——
F(D) =% C DiTszD|zi oy * P C 7 dTZK

> op (8

Ilz.
i

where H = wave height, T = wave period, and d = water depth, I .

and K ., are dimensionless drag and inertial coefficients respe%%ively,
obtaineﬁlby integration from the mudline to an elevation z,, and ¢, and
¢I are correction factors to the EErces obtained by the linear theory.
¢D/is the correction relating to u”~ and ¢I is the correction relating to
du/dt.

According to linear theory:

KDIZ = KDMIZ, cos0|cosb| 7)
i i
KIIZ = KIMIZ, sin® (8)
i i .
The maximum values KDMIzi and KIM 21 integrated from the mudline to an

elevation z; are:
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2 2kz | sinh 2kz,
K. | L1l 1+ 1 ] RS 9)
DM Zi 8 d sinh 2kZi sinh 2kd
T2 sinh 2kzi
=1E ——
KIM zi %73 Cosh kd (0
where k = wave number = 2w/L and L = wavelength. K |z, and KI | are
given by figures 2 and 3, respectively, as a function 5t z/d ang E}Lo'

NONLINEAR FREE SURFACE

F(D3)IZi at z, = S, requires the knowledge of the free surface
elevation S as fuiiction of phase angle, 6. This is done by applying
the free surface given by the stream function wave theory by Dean
(1974). The results are presented in the form of S./d as a function
of H/H , d/L_ and 0, in figure 4. Hb is the limit wave height as
defineE by D2an (1974).

The use of figure 4 is illustrated by an example. Given d/L =

.033, 8 = 20° and H/H_ = .75 enter figure 4 vertically with a valfle of
d/Lo = .033. As indicated by the arrow in the figure, one proceeds
downward until the line of H/H_ = .75 is intersected. A line is then

drawn horizontally towards the right until the 6 = 20° line is inter=~
sected. Now move vertically downward to read Se/d = 1.256.

CORRECTIONS FOR NONLINEAR WAVE KINEMATICS

The second correction to linear theory is due to the nonlinear
wave particle velocity and acceleration fields. The correction coeffi-
cients ¢, and ¢. Iincorporate a number of nonlinear effects, most
notably due to %he convective acceleration terms. These nonlinear
effects are a complex function of relative depth, d/L_, wave phase
angle, 6, the ratio of the local height to breaking héight, H/Hb’ and
the ratio of elevation to water depth, z/d. These are given by the
ratio of the forces obtained by using the values obtained by a nonlinear
wave theory to the corresponding value given by linear theory. To
incorporate all of these variables at each z would require a large
number of nomographs. Therefore a conservative approach was adopted
where the nonlinear correction factors at the free surface were applied
over the water column. While the nonlinear effects actually vary with
z/d and 6, the most important corrections are near the free surface.
Therefore only a global nonlinear correction is applied over the
entire pile length, from the sea bottom to the nonlinear free surface.
Also the phase variations given by cos® and sin® respectively, are
retained in the general equation. The error resulting from this
simplification is that forces are generally over-predicted by a few
percent at levels below the free surface. Figures 5 and 6 present the
nonlinear correction factors ¢, and ¢_ as a function of phase angle,

6, H/Hb and d/L . Note that tRe corrdctions approach unity for 6

= 30° and 50° for drag and inertia respectively. TFor greater 8, correc-—
tions are less than unity, but a conservative design procedure would

be to use the correction at unity for & > 30° for drag forces and 6 >
50° for inertia forces.
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TOTAL FORCE ON PILE OF VARIABLE DIAMETER

Based on these assumptions the total force on a pile of three
diameters can now be written:

Fpo= Fp+ Fy a1
)
= L —_— - -—
Fp=de G = d K[, @ -Dp)+x | (@ -0
T 1 2
+ KDM'SG (D3)] ¢D cos8|cos6| (12)
- md H 2 2 2 2
Fpo=p Gy =7 =5 [Kpl, @) - D) + Rpyl, (05 - b
T 1 2
2
+ K1M|se (01 ¢, sind (13)

MOMENT CALCULATIONS

Expressions analogous to the above force equations are presented
for calculation of the wave moment on a pile of diameter, D,, at an
elevation acting about the sea bottom. The moment expression is:

Se
M, = fO f z dz (14)

Referring to figure 1 and using a similar approach, the total
moment , MT’ acting about the sea bottom can be written as:

My = (D) ]zl + M(D,) |ZZ - (D) |ZI + (D) |se - M(D,) |zz (15)

where = total moment acting about the sea bottom; M (Di)| g = wave
moment acting on a pile of diameter D, about the sea bottom %5 a level
zg- Equations for M (Di)|zi are givefi:

5 2
MO |, =k 0y 5t I 0P, Y
1 T 1

(16)

M I

WDZ
1 H .2
+pC, ——— dT (D), ¥
4 T2 IV Zi
where: I‘D(Di)|Zi = I'DM(Di)|zi cose|cos9| (17)

r o)) |zi = T (D)) |zi sinb (18)
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2 4

T 1 1 2
T @Ol =% &5 —— [1 + 2(kz,)
DM 2y gz (81r)2 coshzkd *

+ 2kz sinh 2kz, - cosh 2kz,] (19)

1 gZT4 sinh kd

812 dz Zosh kd [1+ kzisinh kzi - cosh kzi] (20)

T (Py) lzi =

PDM(Di)I and PI (D.)I 4 are given as functioms of z/d and 4/L_ in
figures 7 andzé respec%ivélyzand can be evaluated up to the free surface
elevation given by figure 4. Y  is the drag moment correction for the
velocity field and ¥ 1s the inértial moment correction for the accelera-
tion field. Other variables are as previously defined. The nonlinear
moment correction factors, ¥ and Y , are given in figures 9 and 10,
respectively, as functions o d/Lo’ 8, and H/Hb'

MAXIMUM VALUES - EFFECT OF PHASE ANGLE

The total maximum force and total moment phase angle cannot be
readily determined for a pile of variable diameter. The drag force is
maximum at 6 = 0, and for small diameter piles, the maximum value is near
6 = 0; but as the diameter increases the inertial force becomes more
prevalent and shifts the location of the maximum total force toward 0 =
90°, The maximum inertial force occurs at some unknown angle, but its
maximum value can be determined as a function of H/H_and d/L_only by
application of formula (13) in which one takes z, = d and one replaces
¢. sin® by ¢_ given by figure 11. A similar me%hod applies to calculate
the maximum mMoment due to inertia. The correction factor, WIM’ is then
given by figure 12.

CONCLUSION

The preceding outlines the methodology for determining nonlinear
wave forces on piles of variable diameters. The methodology greatly
simplifies the interpolation required in using stream function theory and
permits one to estimate wave forces and force distribution over the pile
column. The method presented is for a gemeral case. The US Navy Manual
DM26.2 (1982) describes other cases in more detail to simplify the wave
force and moment calculation for special cases.

By considering 0 as a variable, the time history of the total force
and moments on piles of varying diameter can be determined. Therefore
the method is amenable to determine the total wave forces on structures
supported by a number of piles.
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NOTATION
CD = drag coefficient
Cm = inertia coefficient
d = water depth
Di = pile diameter
f(Di) = wave force per unit length of pile of diameter Di
F(Di) = wave force on a pile of diameter Di
FT = total wave force
g = 32.2

H = wave height

k = 2n/L

K l = linear drag force coefficient evaluated at an elevation zi

D'z,

i above the sea bottom
K l = maximum linear drag force coefficient evaluated at an elevation
DM'z, .
i zi above the sea bottom
KIlz = linear inertia force coefficient evaluated at an elevation zi

i above sea bottom
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KIM 2 = maximum linear inertia force coefficient evaluated at an
i elevation N above the sea bottom

L = wavelength

M(Di) = wave moment on a pile of diameter Di

Se = free surface elevation at arbitrary wave phase angle 6
T = wave period

z, = elevation above the bottom

FD|z = linear drag moment coefficient evaluated at an elevation zi
i  above the sea bottom

rDM'z = maximum linear drag moment coefficient evaluated at an elevation
i zi above the sea bottom

FII = linear inertia moment coefficient evaluated at an elevation zi
i  above the sea bottom

FIM, = maximum linear inertia moment coefficient evaluated at an

i elevation zi above the sea bottom
9§ = wave phase angle

density of water

el
n

¢.. = nonlinear drag force correction factor

¢I = nonlinear inertia force correction factor

o
1]

nonlinear drag moment correction factor

[
H

nonlinear inertia moment correction factor





