
THE CONTROL OF WAVE ASYMMETRIES IN RANDOM WAVES 

ABSTRACT 

The concept of wave asymmetry is reviewed and a prototype wave re- 
cord is analysed. A three stage non-linear transformation, together 
with a Fourier transform substitution technique, is described. The 
method is tested by numerical simulation using statistical analysis 
procedures.  Physical realizations are compared graphically. 

1.0  INTRODUCTION 

Nearly all techniques for the synthetic generation of "random" 
waves in laboratory flumes or basins assume that wind generated waves 
can be adequately described by a Gaussian stochastic process. This as- 
sumption has simplified both the process of wave generation and wave 
data analysis. However, many wave parameters are known to depart from 
the Gaussian hypothesis. Although these deviations are usually small 
in a statistical sense, they can represent significant factors in the 
study of structural responses to wave attack. Some of these non-Gaus- 
sian wave parameters deal with wave asymmetries which have recently 
been parameterized by Kjeldsen and Myrhaug (1979). 

In this regard it is interesting to reminisce that, during the 
1950 and 1960 period, one of the justifications in the defence for the 
construction of costly wind-wave flumes was based on the argument that 
the wind was essential to "steepen-up" the waves. This appears to be a 
correct observation because, as many experimenters in coastal engineer- 
ing know, a random wave simulation based on a Pierson-Moskowitz spec- 
trum for a fully developed sea, but without the use of wind, does not 
contain a significant number of breakers; a condition which does not 
correspond to Nature. 

Such simulations are typically produced either from filtered white 
noise or by inverse Fourier transformations of amplitude spectra in as- 
sociation with randomly selected phases. Either of the two methods 
lead to functions of time which have Gaussian amplitude distributions. 
Such Gaussian stochastic processes are, on the average, perfectly sym- 
metrical, that is to say that the average crest height equals the aver- 
age trough height and that the crest front steepnesses are, on the 
average, equal to the crest rear steepnesses.  However, the presence of 

B.Sc., M.Sc., Senior Research Officer, Hydraulics Laboratory, National 
Research council Canada, Ottawa, Ontario K1A 0R6, Canada. 
Dr.-Ing., Associate Research Officer, Hydraulics Laboratory, National 
Research Council Canada, Ottawa, Ontario K1A 0R6, Canada. 

725 



726 COASTAL ENGINEERING—1982 

wave breakers implies that there is a strong preference for crest 
fronts to be steeper. This is a condition which must be considered a 
departure from the Gaussian hypothesis. In terms of spectral concepts, 
wave asymmetries imply a correlation of phases of harmonically related 
frequencies; a concept still requiring proof. 

Wave profiles, however, do change when a wave propagates from deep 
into shallow water and begins to feel the bottom. The crest becomes 
larger and shorter while the trough becomes flatter and longer. Where- 
as it may not be unreasonable in deep water and in the absence of wind 
and currents to approximate "random" waves by Gaussian stochastic pro- 
cesses, this may not necessarily be so under other conditions. It is 
not uncommon to place a wave generator in "deep" water and then let the 
natural shoaling process transform the wave profiles. This can, at the 
expense of floor space, overcome the limitations of the generation 
technique. On the other hand, if possible, one should attempt to con- 
trol the wave machinery to realize, at the boundary, all wave proper- 
ties which are measurable in Nature. This approach to "random" wave 
generation has been referred to as a deterministic approach and has led 
to a number of innovations such as the generation of specific wave 
transients (Mansard and Funke 1982, S.P. Kjeldsen 1982), the control of 
the distribution of energy in the time domain ( H. Lundgren and S. E. 
Sand 1978, Funke and Mansard 1980), and the generation of the correct 
group bound long wave components (Barthel et al 1983, and Sand 1982). 
This paper describes a method which imposes non-linear transformations 
in the time domain to a Gaussian function of time for the purpose of 
controlling wave asymmetries. These distorted functions of time are 
then used to create wave generator control signals which can produce 
the desired wave characteristics at the test site some distance away 
from the wave board. 

2.0  WAVE ASYMMETRIES 

Kjeldsen and Myrhaug (1979) have parameterized wave asymmetries as 
given in Figure 1. According to this, the horizontal asymmetry factor 
is u = n'/H where n' is the crest height and H is the zero down cross- 
ing wave height. The horizontal asymmetry factor gives, therefore, the 
asymmetry about the horizontal axis at the mean water level. For Gaus- 
sian processes this should, on the average, be 0.5. 

The vertical asymmetry factor, on the other hand, gives the asym- 
metry about the vertical axis at the point of the wave crest. This is 
given as A = L"/L' where L" is the crest rear length and L* is the 
crest front length, both measured along the horizontal axis. Intuition 
suggests that, for Gaussian processes, this ratio should be near one as 
the number of crests with steep fronts is expected to be equal to the 
number of crests with steep backs. However, as shown in Appendix A1, 
even if the waves are symmetrical, the expected value of this ratio is 
always greater than one. This ratio is therefore not a very useful 
measure for the detection of preferential asymmetries in crest steep- 
nesses. 

Two other parameters are the crest front steepness which is given 
by £ = n'/L1 an^ correspondingly the crest rear steepness which is 
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FIG.1     DEFINITION   SKETCH   OF   WAVE   ASYMMETRIES 

S =  n'/L".  These two prove more sensitive for the determination of de- 
parture from Gaussian behaviour. 

A more traditional concept of steepness is the ratio of H/L where 
H is the zero down crossing wave height and L the associated wave 
length. Whereas this parameter provides some useful information about 
the development stage of the sea, it has nothing to do with asymmetri- 
cal distortions of the waves. 

The measurement of wave asymmetry parameters at sea is not a 
simple matter. There are a number of difficulties which limit the ac- 
curacy of such measurements. Foremost of these is the fact that the 
greatest majority of wave records were obtained by means of Waverider 
buoys which are presumed stationary at a single point in space. Their 
output is derived from a double integration of a band limited accelera- 
tion signal. This results in a water surface elevation as a function 
of time. Wave length measurements are therefore not directly available 
and must be computed by relating individual zero crossing wave periods 
to wave lengths. Because an individual zero crossing wave period is a 
consequence of the superposition of several free running frequencies, 
it is not likely that the simple use of this individual period will 
lead to a correct calculation of the actual wave length. Nevertheless, 
there is little else one can do at the moment and one may be consoled 
by the fact that, whatever mistakes are being made, are also made under 
laboratory conditions.  Therefore, comparative results are still valid. 

Another, more serious, problem deals with the mooring system of a 
wave recording buoy. Figure 2 gives a highly simplified version of a 
buoy mooring system which assumes that the compliant mooring line 
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exerts a nearly horizontal restraining force on the buoy. As a wave 
progresses from right to left, the buoy climbs up along the wave 
front. The additional uplift force, due to acceleration and friction, 
results in a stretch of the compliant line. When the buoy reaches the 
wave crest, it starts to slide down the rear of the crest, propelled by 
both the gravitational force as well as the spring force of the mooring 
line.  This results in a rapid descent from the crest. 

To illustrate this motion a hypothetical strobo-graph is shown in 
Figure 2 in which points represent buoy positions at constant time in- 
tervals. Points 1 to 7 represent the rapid descent whereas 8 to 19 
correspond to the rise of the buoy to the crest. The corresponding 
time history, which is shown to the right of the strobo-graph, gives 
the same information except that all points are placed at constant time 
intervals along a time axis. From this it can clearly be seen how the 
mooring system causes a distortion of the water surface elevation 
measurement. This results in a crest rear steepness ri'/L" which is 
larger than the crest front steepness n'/L'. 

Evidently, the examples in Figure 2 have been exaggerated to make 
a point. Nevertheless it must be expected that prototype wave record- 
ings obtained from Waverider buoys do not supply reliable vertical 
asymmetry factors or crest steepnesses. 

To overcome this problem, one may wish to investigate wave record- 
ings obtained from staff gauges mounted on stable platforms. However, 
it should be remembered that these records do contain a set-down which 
depresses the mean water level under wave groups. In order to be 
strictly correct, such wave data should be high pass filtered prior to 
zero crossing analysis or else the wave asymmetry parameters may not be 
calculated correctly. 

Figure 3 gives an example of a statistical analysis of wave asym- 
metry parameters for wave data recorded in the Hibernia field area off 
the east coast of Newfoundland using a Waverider buoy. It is note- 
worthy that the average crest rear steepness is 5% larger than the 
crest front steepness; a condition which is opposite to what one would 
expect in a severe storm. This indicates that the mooring system prob- 
ably distorted the wave record. The horizontal asymmetry indicates a 
minor deviation from 0.5, which suggests that wave crests are slightly 
higher than wave troughs. 

3.0  THE NON-LINEAR TRANSFORMATION 

The non-linear transformation assumes the existence of a time 
series from a Gaussian stochastic process; in other words, a time 
series which is known to be symmetrical on the average. 

The transformation takes place in three distinct steps; - the 
amplitude distortion, - the time distortion, and - the crest distor- 
tion. 
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FIG.3    ZERO  CROSSING ANALYSIS OF WAVE DATA RECORDED 
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3.1     The amplitude Distortion 

The   non-linear   amplitude   transformation   is   given   as: 

nli    =    rii + Cp-tii /an    for    m >  0 

n1i    =     ni + Cn'li2/",,     for     tli  <   0 

11 i     =     r,j_ for     m  =  0 

(1) 

(2) 

(3) 

Tli ^S the -^h sample of the symmetrical time series 

Cp and Cn are the non-linear transformation coefficients, and 
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a^ is the standard deviation of the time series nj_ and is 
introduced to permit the use of a normaiized, non-dimensional 
transformation coefficient. By convention, the standard de- 
viation a^ is evaluated over the total length of the time 
series which is to be transformed. As an exception, when 
this transformation is applied to a wave transient, the 
evaluation of o is limited to the duration of the transient 
only. 

Naturally, a non-linear distortion of the type described in equa- 
tions (1) to (3) must have an effect on the spectrum of the primary in- 
put signal. If this distortion were to be imposed on a pure sinusoid, 
one would notice that the spectrum of the distorted signal contains 
energy at frequencies which are second and higher harmonics to the 
fundamental. 

The intent of this transformation is, however, not to modify the 
primary input spectrum and it is therefore a necessary condition for 
the transformation to succeed, that the primary input spectrum contains 
enough energy in those bands of frequencies which may serve as second 
or third harmonics to the lower frequency band of the same spectrum. 
In other words, narrow band spectra without a high frequency tail are 
not suitable for the generation of asymmetrical waves. 

A corollary to this observation is that asymmetrical waves must 
have a broad spectrum. 

In order to preserve the primary input spectrum, a technique is 
being used which makes a substitution of the Fourier amplitude spectrum 
and is therefore referred to as the Fourier transform substitution 
method. A similar technique has been used by Funke and Mansard (1980) 
and it works as follows. After the non-linear transformation of the 
primary input time series has been completed, a Fourier transform of 
the distorted time series is undertaken. This transform is resolved in 
terms of its amplitude and its phase spectrum. The amplitude spectrum 
is then discarded and replaced by the primary input spectrum after 
which an inverse Fourier transform is performed. Evidently, the resul- 
tant time series may not be as severely distorted as was initially in- 
tended but, if the spectrum is broad enough, the differences are hardly 
noticeable. 

It is worthwhile to make two comments on this Fourier transform 
substitution. The fact that the input and the output amplitude spectra 
are identical, while their two respective time series exhibit different 
wave form distortions, means that the non-linear transformation descri- 
bed here only causes a realignment of the phase spectrum. Secondly, if 
the input time series had been a pure sinusoid, a violation of the 
broad spectrum condition, then the Fourier transform substitution would 
have restored the distorted sine wave back to its original pure 
sinusoidal shape. 

Figure 4.1 illustrates a symmetrical time function with Gaussian 
amplitude distribution, referred to as the reference wave. Superimpo- 
sed on this is a time series after the first non-linear transformation 



732 COASTAL ENGINEERING—1982 

and Fourier transform substitution. Cn and Cp values used in this 
example were 0.71 with a = 0.048 m. To enhance comparison, a section 
from 45 to 60 is shown enlarged in Figure 5.1. This figure shows also 
the two variance spectral densities of the reference and the distorted 
wave train. 

As an option, Appendix A2 gives a method for calculating Cn and 
Cp as a function of the parameter a defined in Section 3.2. 

3.2  The Time Distortion 

Whereas the time series was, up to this point, a series of regu- 
larly spaced samples n1 •}_, it is now necessary to convert the data to 
a two-dimensional series of (t^, n 1 j_) values. Then, for each zero 
down crossing interval, i.e. for an interval embracing a trough and the 
following crest, the time coordinates are transformed in two stages; 
first for the jth trough period according to: 

ti" = (1 + a)-ti* (4) 

where: 

tj_'  is measured from the  instance of the relevant zero down 
crossing, and 

a    is a scaling parameter which is greater than zero, 

and then for the jth crest period according to 

ti" = {1 + cO'ti' - a'-ttj/ - TNZj) (5) 

where: 

a*   is a scaling parameter greater than zero and is given by: 
TZj*a/(TZj - TNZj) 

TNZ-; is the length of the jth trough period, and 

TZ -i  is the length of the jth zero down crossing period. 

This transformation will expand the trough period and contract the 
crest period but not change the length of the total zero down crossing 
period. As a result, the transformation will affect the vertical asym- 
metry as well as the crest wave steepnesses. However, the symmetry of 
the crest steepness will not be affected. 

A factor of a = 0.2 was applied to the reference wave train. Re- 
ferring to Figure 4.2, the transformed wave train may be compared to 
this reference. The enlarged section between 45 and 60 seconds is pre- 
sented in Figure 5.2 which shows quite clearly how the time scale dis- 
tortion has been realized. It should also be noticed from this figure 
that the variance spectrum has not been affected to any significant ex- 
tent. This suggests again that the only difference is in the realign- 
ment of the phase spectrum. 
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It must also be pointed out that the compression of the crest 
duration and the associated expansion of the trough duration leads to 
an unavoidable shift in the mean value which must be removed subse- 
quently. This adjustment in mean value has an effect on the horizontal 
asymmetry as is evident from Table I. 

3.3 The Crest Distortion 

The third transformation has the purpose of moving the location of 
the wave crest maximum forward/ thereby increasing the crest front 
steepness and decreasing the crest rear steepness. First, the crest 
periods are identified by zero up crossings and following zero down 
crossings. Then, for each crest period, the time coordinates are 
transformed according to: 

Ti" = (1 - 0)'V + 3'<V)2/TZCj (6) 

Tj_'  is measured from the instance of a zero up crossing 

TZC-j is the jth crest period, and 

3   is a scaling parameter greater than zero. 

A factor 3 = 0.25 was applied to the reference wave train and 
Figure 5.3 illustrates the result of this last transformation which is 
only minor and therefore requires very close inspection to be noticed. 

4.0  STATISTICAL ANALYSIS OF RESULTS 

A statistical analysis was carried out on the four numerical simu- 
lations shown in Figure 4, the first of which is the reference wave and 
the other three represent the three stages in the non-linear transfor- 
mations.  Table I gives the results of this analysis. 

Table I provides both the mean and the root-mean-square value 
(RMS) for each of the wave asymmetry parameters. These are given in 
diagonally opposite corners of each box. Inspection of the table 
reveals the following: 

a) The average wave height has not changed significantly as a 
result of the transformations. 

b) The average steepness has decreased by 10% after the first 
transformation but thereafter remained constant. It is not 
clear why this should be, in view of the fact that the aver- 
age wave height remained unchanged and wave periods have not 
been altered in any way. The Fourier transform substitution, 
which takes place after the first transformation, will have 
some uncontrolled consequences which may be the reason for 
this phenomenon. 
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0.031 
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WAVE   ASYMMETRY   PARAMETERS 

BY   NUMERICAL   SIMULATION 

TABLE 1 

c) The crest front and crest rear steepnesses must be considered 
as pairs because as one increases, the other must, of neces- 
sity, decrease. Because the reference wave train has a Gaus- 
sian amplitude distribution, it could be expected that the 
crest is symmetrical and therefore the crest front steepness 
should be nearly equal to the crest rear steepness. Accord- 
ing to Table I, this symmetry is preserved until the last 
transformation at which point the crest front becomes steeper 
than the rear. On the other hand, as the crest is being amp- 
lified, both crest steepnesses increase. Also, as the crest 
period is being decreased, crest steepnesses increase as 
well. 

d) The vertical asymmetry of the reference wave is larger than 
one as can be expected according to Appendix Al . It is not 
clear why the crest amplification increases the average ver- 
tical asymmetry. It is suspected that the Fourier transform 
substitution is the cause of this. Reducing the crest period 
means that the scatter of crest front and rear steepnesses is 
reduced and therefore the average of the ratio of these 
steepnesses, namely the average vertical asymmetry is also 
reduced. Finally, the last non-linear transformation causes 
the vertical asymmetry to increase significantly. 
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FIG.6    PROBABILITY  DISTRIBUTION  OF WAVE ASYMMETRIES 

(  NO DISTORTIONS ) 

A more detailed description of this statistical analysis is provi- 
ded in Figures 6 and 7 together with Rayleigh distribution functions 
which were matched to the first and second moments. From these it may 
be noticed how the distribution of crest steepnesses changes as a re- 
sult of the non-linear transformation. The vertical asymmetry distri- 
bution also demonstrates a change, leading to a reduced scatter of 
values. 
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5.0  PHYSICAL REALIZATION OF ASYMMETRICAL WAVES 

A prerequisite for the generation of asymmetrical waves in a wave 

flume or basin is the ability to reproduce a symmetrical wave train 
with reasonable fidelity. This is accomplished by a method described 

by Funke and Mansard ( 1983) which is based on linear dispersion theory 

and linear wave board theory. Figure 8 gives an example of such a re- 

production from which one may clearly recognize and compare the various 

wave groups in the two wave records. Whereas wave grouping reproduces 
quite well, the accuracy of reproduction of individual waves is not 
perfect. However, this is, more or less, what is possible with present 
day technology. 
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FIG.8     REPRODUCTION   OF  WAVE   TRAIN   IN   THE   FLUME 

(   WITHOUT   ASYMMETRIES   ) 

Figure 9, on the other hand, compares the measured wave train 
without asymmetries to a wave train with asymmetries. Figure 10 shows 
a section from 40 to 120 seconds of the same waves at an amplified 
scale. Several of these waves show the effect of wave asymmetry 
transformations. 

All operations for the synthesis, generation, data acquisition, 
analysis and graphic output were realized through the GEDAP software 
system operating on a  HP   1000   computer   (Funke  et  al   1980). 
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6.0  CONCLUSIONS 

A technique was described for the transformation of Gaussian 
stochastic functions into wave trains with various degree of wave 
asymmetry using two, three of four transformation parameters. The 
technique was tested by numerical simulation which indicated that the 
technique achieved the expected results. Physical reproduction of 
asymmetrical waves was shown to be possible although with reduced 
fidelity. 

Insight, which resulted from the application of the non-linear 
transformation, suggests that waves with significant asymmetries must 
have broad spectra, that wave trains with and without asymmetries may 
have identical variance spectral densities and therefore, that the 
difference between the two must be contained in their respective phase 
spectra. 

The ability to make a meaningful analysis of wave asymmetries on 
the basis of Waverider recorded wave data is limited because of 
distortions introduced by their mooring system. 

Future research must explore the extent of physical realizability 
of wave asymmetry in wave flumes and basins, and match the distortion 
parameters to c, a and 3 to conditions observed in Nature. The 
sensitivity of experimental measurements for structural response to 
wave asymmetry simulations must also be determined. It is hoped that a 
non-linear transform can be developed for the compensation of Waverider 
records for their mooring effects. 
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APPENDIX A1 

Expected Value of a Ratio of Two Random Variables 

Suppose there are two random variables 
L' and L" such that: 

L = L" + L" (A1) 

Assume also that: 

L' = L/2 + 6 (A2) 

where L is assumed constant, and 

6 is a random variable with zero mean, i.e. 

E{6} = 0 

In order to estimate the expected value of L'/L" equations (A1) and 
(A2) are arranged as follows: 

L" = L/2 - 6 

L'/L"  =  (L/2 + 6) / (L/2 - 6) 
=  (1 + 2 6/L)-<1 - 26/L)-1 

=  (1.+ 26/L)'(1 + 26/L + (26/L)  + (26/L)  + +) 
=  1 + 2-(26/L) + 2(26/L)2 + 2(2<S/L)3 + + 

Because the expected value E J2 6/L} = 0, we have, as a first approxima- 
tion for the assumptions given above, that: 

E{L'/L"} = 1 + 2E{(2<S/L)2} > 1 

This proves that even for symmetrical crests, i.e. E{6} = 0, the expec- 
ted value of the vertical asymmetry is always greater than 1. 
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APPENDIX A2 

Derivation of C-Coefficients as a Function of a 

Let ni = n(t) + Cp-n (t)/a for n(t) > o 
and n2 = Ti(t) + Cn-n

2(t)/a for n(t) < 0 
Also let T1 + T2 = T 
and     T1 = T/2M 
and     T2 = T/2(1 

a) 
a) 

Object:   To find Cn and Cp as a function of a. 

Solution: 

Assume   n(t)   = A'sin(nt/T1)   +   (Cp/a) •A2-sin2 (itt/T1)   for  n(t)   >  0 
and n(t)   = A • sin (7it/T2 )   +   (Cn/a) •A2-sin2( nt/T2 )   for  n(t)   <  o 

and 
AREA2   =   (Cn/0) •A2/2'T2   -  2A-T2/TT 

For  the  mean  value  to  be   zero,   set 

AREA1      =      AREA2      or 

(Cp/a)-A^'TI   +   2A-T1/7T  =   (Cn/a) •A2/2'T2   -   2A-T2/TT 

Substituting for T1   and T2, 

T   (1-a) •[(cp/a)'A/2 + 2/TT]  = T  (1 + o)«[(Cn/a)-A/2  - 2/ir] 

>]   =  |^<cp-cn)   +  Vit 

If   C„   =  C„ 

4a/( TT»a-A) 
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If the undistorted wave is a sinusoid, then 

a = A//2 

and 

C = 2*/2/(iT*a) for a sinusoid 

If the undistorted wave is a Gaussian stochastic function, then one may 
wish to set "A" corresponding to the wave crest of a wave with 
significant wave height, i.e. 

a = A/2 
and 

C = 2/(Tfg) 




