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0. ABSTRACT 

The Lagrangian long wave equations and the Lagrangian 
expressions for stress and strain are derived. Retaining the 
dominant terms the long wave equations are solved using an ex- 
plicit finite difference method. 

Using the numerical solution, particle paths are computed 
for the tidal motion in a basin connected to the ocean by a single 
inlet. At the open boundary particle displacements are described. 
Computations are carried out with and without the Coriolis force 
and for linear and nonlinear bottom friction. 

1. INTRODUCTION 

With regard to the physical oceanography of estuaries and 
lagoons,  the  coastal engineer's interest  traditionally has been 
with current  velocities  and tide  levels.     Only recently as a 
result  of the development  of water quality models knowledge  of 
water particle trajectories have become important.     The  current 
method of computing particle trajectories is to first  solve  for 
the Eulerian velocity field and then to calculate the  successive 
particle positions by numerical integration and interpolation. 

This paper illustrates the  calculation of  particle  paths  by 
integrating the Lagrangian form of the  long wave equations.     The 
Lagrangian long wave equations describe the  particle  position as 
a function of its  original  particle  position and time,  whereas 
the Eulerian equations  describe the  velocity  (flow)  at   a fixed 
position in space.     In addition to the particle trajectories, the 
Lagrangian long wave equations yield the water  level  and depth 
associated with a traveling parcel of water. 

The Lagrangian equations are  often overlooked because of the 
severe nonlinearity of some of the terms, the difficulty in calibrat- 
ing and verifying the results and the  lack of appropriate boundary 
conditions.     Nevertheless the technique has been successfully applied 
to 2-D vertical  fluid flow problems. 
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The  general three-dimensional  Lagrangian form of the Navier- 
Stok.es equations  can be  found in various text  books,  e.g.  Lamb   [1932], 
Neumann and Pierson  [1966],  Defant   [1961]  etc.     Because a literature 
search revealed no previous studies  aimed at  specifically developing 
the Lagrangian form of the two-dimensional horizontal long wave 
equations a rather detailed derivation of these equations together 
with a derivation of the expressions for strain and stress is pre- 
sented.     Wherever possible, equations  are  derived starting  from physical 
principles  rather than applying a straight  transformation from Eulerian 
to Lagrangian variables. 

Past  work utilizing the Lagrangian form of the  fluid  flow 
equations has  been mainly in the  area of  surface  gravity waves. 
MLche   [1944]   uses  a perturbation technique to  solve the Lagrangian 
equations  for first  and  second order  surface  gravity waves.     To a 
first   order of  approximation his  results  yield a wave  profile  similar 
to Gerstner's trochoidal wave,  whereas  in the Eulerian system this 
isn't  possible until the third order of  approximation.     Goto  [1979] 
and  Shuto and Goto   [1978]  numerically computed tsunami  run-up using 
the  nonlinear   1-D long wave equations.     In the equations  bottom 
friction and viscosity was neglected.     Brennen   [1970]  and  Brennen and 
Whitney  [1970]   present  a numerical  solution to the problem of unsteady 
free  surface gravity waves using the  2-D vertical Lagrangian equations. 

Other  studies  of  interest  utilizing the Lagrangian equations  are 
mainly in the  field of  turbulence,   Pierson   [1962],   and the  related 
problems  of  stirring,  mixing and dispersion. 

2.        THE   MOTION  OF A  FLUID  ELEMENT;   STRESS  AND  STRAIN 

2.1     Coordinate  System 

Considered is a  fixed  Cartesian coordinate  system x,   y,   z.     The 
position of  a particle  is  designated  s(a,b,c,t),   p(a,b,c,t)  and 
r(a,b,c,t) where  s,   p  and  r,   and a,  b and c  are measured in respectively 
the  x,  y and  z direction.     (a,b,c,0)  represents  the  original position 
of the  particle.     In some  instances  it   is  convenient  to use the 
particle positions  s'(a,b,c,t),  p'(a,b,c,t) and r'(a,b,c,t) where 
s'   = s-a,   p'   = p-b and r'   = r-c.     The  original  position of the particle 
is then s'   =0,   p'   =0 and r*   -  0. 

In the  following  only planar motion in the x,   y plane will  be 
considered. 

2.2    Fluid Deformation 

A fluid element  subject  to stresses undergoes deformation.     For 
a rectangular element  the  deformation after a time   At  is  shown in 
Fig.   1.     In general the  deformation is  a combination of  normal  strains, 
shear strains and rotation. 



654 COASTAL ENGINEERING—1982 

(a,b) 
t = 0 

Figure 1.  Deformation of a Fluid Element 

VSWL 

v~rT~7-^ 

Figure 2.  Cylinder of Fluid Extending from Free Surface n 
to the Bottom -h. 
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The position of the lower left hand corner of the element is de- 
signated s(a,b,t) and p(a,b,t). 

2.3 Normal Strain 

Normal Strain is defined as the change in length of a fluid 
element divided by its initial length. Accordingly, normal strain in 
the x direction is given by 

t+At 
3s 
3a 

Ex   (a,b,t)  = lim 
1 Aa  - Aa 

Aa 
At   + o 
Aa  -> o 

and thus 
3s 

<* =   3a -  1 

similarly 

(2.1) 

ey " 3b ~ ! (2.2) 

By convention an increase in length corresponds to a positive normal 
strain. 

2.4  Shear Strain 

Shear Strain is defined as the change in angle between two 
originally perpendicular lines as the element deforms. Referring to 
Fig. 1, for smal^ deformat ions 

= 1 + 

3P 
3a 

^1  =ls~ 
3a 

3P       , 
"  3a    slnce 

3s 
3a 

similarly 

3s 
3b 

Y2  "   3p 
3b 

3s 
"    3b 

and thus the  shear strain is 

3p 3s 

\y      = Tl       Y2    =~^        "^ (2-3) 

Shear strain is positive for a decrease in the angle between two 
originally perpendicular line elements. 
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2.5 Rotation 

Rotation is defined as   y\  - Y2*     Counter-clockwise 
rotation is taken as positive.    Accordingly for small deformations 
the  rotation in the x-y plane may be written as 

3p       3s 

2.6 Normal  Stress 

Water can be  considered a Newtonian fluid where the stresses are 
linearly related to the time  rate  of strain,  rather than to the  strain 
itself  as in elastic solids.    Assuming an incompressible fluid,  the 
normal stresses in the x direction are given by 

3ex 
a    =  a + 2u-jjr- (2.5) 

where   a is the mean normal  stress  and   y is the dynamic viscosity 
coefficient.     Based on experiments with    incompressible  fluids Daily 
and Harleman   [1966],  the mean normal  stress   a is just  the pressure 
as given below. 

5 = 4 (a   +o   +  a )  = - p (2.6) 
x        y        z 

Substituting for the mean normal  stress in Eq.   (2.5)  and makinhg use 
of Eq.   (2.1) 

°x --P + 2y-|r Cl|> (2-7) 

similarly 

Oy --P + 2yfs ("!•) (2.8) 

2.7    Shear Stress 

The  shear  stress is  linearly related to the time  rate of  change 
of the  shear strain in the  fluid. 

3 
Txz  "   Tyx =   Hit" (Txy) (2.9) 

Substituting for the shear  strain in Eq.   (2.9) yields the shear stress 

3 
lxy - u-g-tt+TE) (2-10) 
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2.8    Vorticity 

Vorticity is  related to the time  rate of  change  of rotation as 
follows. 

1   3 
S = T ~3f (Qxy) 

Substituting the expression for rotation,  the vorticity is 

? =  2   3t   (3a ~   3b> 

(2.11) 

(2.12) 

which is one half times the  curl of the Lagrangian velocity vector. 

3.        CONSERVATION EQUATIONS 

3.1     General Mathematical Relations 

When mapping a region A2  in the sp-plane  into a region Aj  in the 
ab-plane   (see Fig.   1),  the  Jacobian operator is 

3(s,p) 
J =   3(a,b) 

3b 

Jp_ 
3a 

JP 
3b 

(3.1) 

The Jacobian operator is used when transforming double integrals from 
one coordinate system to another. Referring to Fig. 1, 

/   F(s,p)dsdp = /  F[s(a,b,t), p(a,b,t)] J dadb (3.2) 

where F is an arbitrary function.  For a geometric interpretation of 
the Jacobian set F = 1.  The left hand side of Eq. (3.2) represents 
the area A> , which can be expressed as the magnitude of the cross 
product of the vectors representing two adjoining sides. 

,3s       *       dp       ", 3s       -       3p       *• A2 =   I   (15  Aai + -gg  Aaj )  x  (-35 Abi + "^ Abj) | 

which reduces to 

A,  = J A, (3.3) 

Other mathematical relations that will be used in the derivation 
of the conservation equations are the Lagrangina Del operator ( V^) 
and the Lagrangian Laplaclan (\).     The subscript h designates 
a 2-D horizontal operation.  In the s-p system the Del operator is 
written as 
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% 3s i +   3p j 
(3.4) 

A direct  transformation from the  s-p space to the a-b space will be 
employed to find the Del operator in Lagrangian coordinates.     The 
partial  derivatives   3/3a and   3/3b are 

3 
3a  = 

3         3p   3 
3s +  3a   3p 

3 
3b  = 

3s   3          3p   3 
3b   3s +   3b   3p 

(3.5) 

(3.6) 

Equations (3.5) and (3.6) are solved for the partials 3/3s and 
3/3P 

3 
3a 

3p 
3a 

3 
3 
3b 

3P 
3b 

- 
3(   ,P) 
3(a,b) 

1 
3s  " 3s 

3a 
3p 
3a 

J 

3s 
3b 

3P 
3b 

similarly 

3 
3p - 

3(a, 
3(a, 

) 
b) 

1 
J 

(3.7) 

(3.8) 

Substituting Eqs.   (3.7)  and  (3.8)  into Eq.   (3.4),  the Lagrangian Del 
operator is  obtained 

,3(   ,P)     :   ,    3(s,   )   :,   1 
% -  t3(a,b,)  x +   3(a,b) J 1   J 

(3.9) 

The derivation of the Lagrangian Laplacian operator follows along the 
same lines as the Del operator and yields 

..3( , P) 1   ,    ,       3(s, ) 1, 
2 _  3[3(a;b) j, p]    3[s, 3(a,b) jl 1 
\ ' 3(a,b)      +     3(a,b)    J 

(3.10) 

The Laplacian becomes highly nonlinear when converted to Lagrangian 
coordinates. A similar 3-D expression for the Lagrangian Laplacian 
operator is presented in Pierson [1962]. 

In deriving the conservation equations use will be made of the 
Reynolds1 or Kinematic transport theorem.  This theorem expresses the 
rate of change of a property moving with a body of fluid. 
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Let s(a,b,c,t), p(a,b,c,t) and r(a,b,c,t) be the coordinates of 
a fluid particle, where a, b and c are the coordinates of the original 
position. V is the volume of the fluid body under consideration. 
Take F(s,p,r,t) to be any function representing for example momentum 
or constituent concentration, and introduce the volume integral 
G(s,p,r,t). 

G(s,p,r,t) = Jjf      F(s,p,r,t) dsdpdr (3.11) 

tram 
me, 1 

dt" " dF I j j F(s,P,r,t)dsdpdr 

The Reynolds' transport theorem is used in order to find the 
change in G with time, that is the total derivative dG/dt. 

(3.12) 

Since the volume is deforming with time, the order of integration and 
differentiation cannot be interchanged.  Making use of the 3-D 
equivalent of Eq. (3.1), it follows from Eq. (3.12) 

dt" = dt  f \  F[s(a,b,c,t) ^(a.b.c.t) ,r(a,b,c,t) ,t ] Jdadbdc  (3.13) 

V0 

V0 is the volume  at t  = 0.     Because V0  is  constant,  the  order of 
integration and differentiation can be  interchanged. 

= \\)   dt   (FJ)dadbdc =    Jj J ("dF J + F dt)dadbdc 
d£ (3.14) 

It   can be shown,  Aris   [1962]   pp.  84,  that 

dJ 3s3p~9r~ /• i   -i n \ 
-gr =  [V.(lt   i + lt  J  +"§t  k)]J t3-15) 

where the Del  operator  is the  3-D equivalent   of   V^ in Eq.   (3.9). 
Substituting Eq.   (3.15)  in Eq.   (3.14)  yields the  Reynolds'   transport 
theorem. 

dG       d      fff ffC      dF as     -      3p   -        9r   ~ 
~3t  =St  JJJ dsdpdr = 1 II     [^T + FV.("3T   i+ ~9t J  + IF k)]Jdadbdc 

V V0 (3.16) 

where   9s/9t,   8p/9t   and   3r/9t   are the  particle  velocities  in re- 
spectively the  x,   y and z  directions.     This  result  will  be  used  repeatedly 
in the  derivation of the  conservation equations.     For  further  reference 
on the Reynolds*  transport  theorem see Aris   [1962]. 

3.2     Basic Assumptions 

In deriving the Lagrangian form of  the  long wave  equations the 
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following basic assumptions will be employed. 

1) Incompressible homogeneous  fluid 

2) Hydrostatic pressure,  i.e.   92r/9t^ « g 

3) Vertical variations in horizontal velocity are 
negligible,  i.e.  planar motion 

3.3     Conservation of  Mass;   Continuity 

Consider a cylinder with volume V moving with the fluid and 
consisting of the same  fluid particles.     The  surface and bottom of 
the  cylinder are  respectively   n(s,p,t)  and h(s,p).     n and h 
are measured from the  Still Water Level.     From the assumption of 
planar motion it  follows that the   cylinder remains  a cylinder even 
though the horizontal cross-section is allowed to deform;  see Fig.  2. 

Continuity implies that  when moving with the  fluid the volume  of 
the cylinder remains the  same. 

V =    jl   (h+n)dsdp = constant (3.17) 

where A is the  cross-sectional area of the  cylinder.     The change in 
volume with time is  zero.     Making use  of the 2-dimensional form of 
the Reynolds'  transport  theorem,   Eq.   (3.16),  with F = h+n. 

fr/d(h+n) 3s -        9p -     \ 
=     jj{      dt    + <n+n)[V(iri + "3? J>]J  Jdadb dV =   , j^ou^ + ,h+n„^,«. J + ^ h]\   Jdadb = 0      (3.18) 

Ao 

Because ^> is an arbitrary area the integrand must be equal to zero. 
From this and Eq. (3.15) it follows 

It I(h+n)J] - 0 (3.19) 

When integraing Eq.(3.19)with respect  to time  from t  - 0 to some 
later time t, the  condition of continuity can be written in the 
form. 

[h(a,b,t) + n(a,b,t)]  J = h(a,b,0) + n(a,b,0) (3.20) 

It   is noted that  for 3-D and 2-D vertical incompressible fluid motion 
the  continuity equation is  simply J =  1,  Lamb   [1932],   Neuman and Pierson 
[1966],  Defant   [1961],   MLche   [1944],  Goto  [1979]  and Shuto and Goto 
[1978],  where J is  respectively the  3-D and 2-D equivalent  of Eq.   (3.1). 

3.4     Conservation of  MDmentum;  Equations  of  Motion 

The rate of change of momentum within a material volume  (cylinder) 
moving with the  fluid equals the  sum of the external  forces.     For the 
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momentum equation in the x-direction. 

d       It       3s 
dF   //    P IE" (h+n)dsdp =   Z Fx (3.21) 

A 

Using the  2-dimensional  form of the Reynolds'  transport theorem,  Eq. 
(3.16),  with F replaced by   p(h+n)   3s/at. 

//    p X (h+n)dsdp =   II    p(h+n) —|    Jdadb 

A A,, 

|j-   //    p "5T (h+n)dsdp =    //    p(h+n) -^    Jdadb (3.22) 

The external forces  acting on the  cylinder consist  of the surface 
forces   (Fs) i.e.  pressure and internal stresses,  bottom shear stress 
(F£>)  and Coriolis Force   (Fc).     Shear  stress and horizontal gradients 
of the normal  stress at the  free  surface,   i.e.  wind stress and 
atmospheric pressure  respectively are  assumed to be  zero.     In the 
following each of the external  forcing terms will be discussed 
separately. 

The total  force associated with the pressure  and internal  stresses 
in the  x-direction is  given by the   line  integral 

Fs  =   f [°x dP _   Txy dsl (3.23) 

in which 

/I /I 
„dr 4 -      /I    oxdr and  xxy -   £ lxy" 

The  line integral  is  along the  intersection of the   cylinder and  a 
horizontal  plane.     Green's theorem in the  plane may be  applied to Eq. 
(3.23)  to  transform the   line   integral  into  a  double   integral 

•/ 

30x        3rxy 

[~3s~    +lp~ 1  dsdP <3-24) 
A 

where  as before A is the  cross-sectional area of the  cylinder.     Sub- 
stituting the expressions for   cu and   T 

fl /I 
/     °x' 
/ -h . 

[ 3s + 3p 1   dsdP (3.25) 

3        /     oxdr 3    I        tjjydr 
-h /    -h 

The normal   stress ox  is  composed  of  pressure and normal  stresses 
associated with deformations.     Considering the  contribution of the 
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pressure  only,  Eg.   (3.25)  reduces Co 

I     -p dr 
/ -h 

•// 
dsdp (3.26) 

(note the difference between the notation p for pressure  and p for 
particle  displacement  in the y direction).     The  subscript   i refers to 
the contribution of pressure to the  surface  force term in the x- 
direction.     Transforming to the a-b space  and making use  of Eq.   (3.7) 

/ 

/     P dr 3   /   P 
/ -h 3p / -h 

dr 
     3p / -h 3p 

Fsl  =   II     I 3a 3b    ~ 3b "alHadb (3.27) 

From the assumption of hydrostatic pressure p =  pgr +  pgn,  the 
pressure may be vertically integrated to yield 

n 
1 2 

p dr = 2   Pg   (h+n) (3.28) 
-h 

Substituting in the expression for Fsi,  the pressure  force is obtained 

ff        /^       3(h+n)3p       3(h+n)   3p       jv Fsi - -  Jj   pgO>+n)[-gi     at" -     ab   ar"]dadb 

*o 

/ 
Ao 

9(h+n),p) 
Pg(h+n) 9(a,b)  dadb (3.29) 

An attempt was made to evaluate the contribution of the viscous 
stresses, ?s2>  DV substituting in Eq. (3.14) the Lagrangian formulation 
for the normal stress a* and shear stress TXV respectively 
Eqs. (2.7) and (2.10).  This resulted in a long and cumbersome 
expression.  In order to arrive at a simpler and manageable result a 
direct transformation from Eulerian to Lagrangian variables is applied. 
Noting that f(s,p,t) is equivalent to f(x,y,t), the Eulerian expressions 
for the normal and shear stresses (Daily and Harleman [1966] pp. 102- 
104) can be written as 
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Lxy =   p[" 

3p 

3p      +     3s ] 

Neglecting the pressure part  of the normal  stress term since it has 
already been accounted for,  and substituting the expressions  for the 
stresses in Eq .   (3.25)  yields 

«s2 IV 3[(h+n) 
3(TE-> 

+ y 

3(-§T) 
a[(h+n) -^~   ] 

3p 

+ V 

3p 
3(-3t) 

3[(h+n)    ai-1 
3p dsdp (3.30) 

or,  when rearranging 

rs2 u(h+n)   [• 

2 JS.           2 JS. 
3 (at)       3 (at),         „     3(h+n)/

a^3t) 
 5-    + •=-]     + 2u  

small 

3       3(" 
+ u(h+y)7- [' 

0  (continuity) 

(3.31) 

If typical values are taken for the particle velocities in long waves 
[ 3s/3t  =   n v'gTh sin  (kxs + k p -  at)],  it  can be  shown that the 
first  term on the righthand side  of Eq.   (3.31)  is the dominant term. 

Thus, 

Fs2 =    (I   ,J<:h+rl)   ^  ("f")  dsdp (3.32) 

Transforming to the a-b space 
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// u(h+n)V2    (-g^) Jdadb (3.33) 

In the   case  of turbulent  motion the  coefficient   of  dynamic 
viscosity,   u,  is  replaced by the eddy viscosity or momentum 
transfer coefficient  A^. 

In addition to stresses  on the  cylinder wall,  the bottom of the 
cylinder is  subjected to a shear stress.     In general, the horizontal 
components of this  stress are taken proportional to the  square  of the 
velocity.     E.g.  in the  x-direction 

V <1F>    + Cf) *xz -    P* IF   V ("* >    + <1F) 

where F is the  friction coefficient.     Integrating over the cross- 
section of the  control volume, the  bottom frictional  force is 

/3s   \/3s  2 3p  2 

f* IF   V("*)    + ^    Jd Jdadb (3.34) 

"Ao 

Sometimes the bottom stress is taken proportional to the velocity. 
In that  case, the expression corresponding to Eq .   (3.34) is 

*•-/ 
PF£lFJdadb (3.35) 

*o 

where F^ is the  linear bottom friction coefficient. 

Assuming the vertical  velocities to be  small  compared to horizontal 
velocities the  Coriolis force per unit  volume  can be written as 

9p 
pf -jfc x-direction 

3s 
~    pf IE y-direction 

where f = 2Q sin  $ 

SI - angular velocity of earth 

<j> = latitude 

Integrating the  Coriolis  force  over the volume  of the  cylinder,  the 
force acting  on the  control  volume  in the x-direction is 

( 

3P 
p(h+n)  f "gt   Jdadb (3.36) 
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Similarly for the  Coriolis force  in the y-direction 

/( 

3s 
p(h+n) f   at-Jdadb (3.37) 

Equating the rate of  change  of momentum and the external  forces 
for the  x-direction,  omitting the integral  signs  (this is justified 
because the integration is over an arbitrary area)  and dividing by 
p(h+n)  yields 

at' W + cf )2 l     o + V.4.T, at-    V »•;»-1    + <• at- > z at 

Ai     o   ,8s,, 3(h+n,   p) 
-  V^   (T)]  j.-g   3(a^

P (3.38) 

This  is the  Lagrangian conservation of momentum equation  for  long waves 
in the x-direction.     Similarly for the y-direction 

Sf^i fe2 + <f>2- 
— Vh  C^)]   J - - g      3(a>b) (3.39) 

An alternate form of the Lagrangian equation of motion is obtained by 
multiplying Eq.   (3.38)   by   3s/3a and Eq.   (3.39)  by   3p/3a. 
This yields 

ri!l + _I il \/A2
 + A2'_ f i£ l~2 + h+n 3t   Vt3t)    + (3t)        *   at 

£ V2  <£>,£ (3.40) 

 F 
h+ nf\/(t>2 + ^2' + 

A
h    2  , 3p,,3p 3(h+n) 

7" V
h  

<1E"> ]"te = - g ~~3T~ 

Similarly multiplying Eq.   (3.38)  and   (3.39)  by   3s/3b and   3p/3b 
respectively and adding 

1
31;2 

+ h+n at   V^5   + (atJ      f at 

N2   <£>£ (3.41) 
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r3
2p        F     3p    \j 3s  2 3p  2 

Ah    2   , 3p     3p                3(h+n) 
J~\  (~*)]!b = "8 lb  

3.5     Boundary and  Initial   Conditions 

In order to  solve the  Lagrangian long wave equations,   boundary 
conditions have to be  specified.     The type  and number of boundary 
conditions that   are  necessary  are given below. 

for inviscid  flow (A^ - 0) 

at   closed boundaries:     normal particle displacement  is  zero 

at  open boundaries: particle path or water level along path 
is prescribed. 

for viscous  flow (A^ £ 0) 

at   closed boundaries:     normal  and parallel  particle  dis- 
placement 's  are   zero 

at  open boundaries: particle  path or water level along 
path is  prescribed 

Initially the  system is assumed to be at  rest,  i.e.  the water 
level is at  the  Still Water Level and all particle  displacements are 
taken to be  zero. 

4.       NUMERICAL  SOLUTION OF THE 2-D LONG WAVE EQUATIONS 

For  small  deformations  the  non-linear terms  in Eqs. (3.20), (3.40) 
and (3.41) can be  neglected.     Introducing the variables  sT   and p1 

(see  section 2.1).     Equations (3.20), (3.40)and (3.41) reduce to re- 
spectively 

3s' 3h' 
+ h-gs- =  n + [h-h(a,b,0)]  = 0 (4.1) 

32s' 

3t2 

32p' 

at * 

3p'         3(h+n)            F            3s' \ / 3s'   2        3p'   2' 
~ r 3t     + B   3ia                   h+ti         3t     V   3t                & 

3s'         3(h+n)          F       3p-    \ /as'   2        3p-  2 
+ f3t     +s       3b    = " h+n  3t        V(3t   }    + (3t   > 

(4.2) 

(4.3) 

ttien assuming  linear bottom friction the  righthand sides  of Eqs.   (4.2) 
and(4.3)are  respectively - F»   3s*/9t/h+n and - F*   3p'/3t/h+n 



PARTICLE PATHS COMPUTATION 667 

The employed difference equations, are 

\,i+hli[(slrl-i,i)/Aa + (>i,rpi,d-i)/ibl+h« = hL      (4-4) 

1       , n+l       „ n n-1, f        . n     ,. n ,   n     ,   n n-1 
 o   (s.   .   - 2s.   .+s.   .)   - y—— (p.   ,+P.,.   .+p.   ,+P.,,   .   .-P.   7 

At
2       i,J i,J     1,3 AAt 1,3     l+l,:     1,3     1+1,3-1     1,3 

n-1 n-1 n-1 ,    , I ,  n+l    n-1, 

-Pi+i.rPi^r'i+i.j-i^^i^^i.r8!^ 

-^-(Pn+1 -2P
n   .+Pn-7)  +T|-(Bn   ,+^n .   ,+sn   .    +sn  .   ,^-s"-1 

At2     *l,3 1,3     1,3 4At       1,3     1-1,3     1,3+1     1-1,3+1     1,3 

n-1 n-1        ,n-l ,    , I ..n      . n-1, 

-Vi,J-
si,d+rvi,J+i'+^=-^i,rpi,j) 

= -fb [(h+<j+r
(hK,3] 

(h+n).   .  +  (h+n)'       . 
*<iSn")  =  id 1±LJ. 

2 

(h+n)n  . + (h+n)n  ,x1 

<(h+T)   -  id- i^±i~ 

sn . + a? i .  Pn . + pn . , 
hn . - function [Jiil—-iriil  „i,3   i„1tl_3 
i,3 2 2 

These equations operate over a finite number of points on a spatial and 
temporal grid.  For a nonlinear bottom stress, the difference form of the 
friction term in the x momentum equation is written as 

h+n at \/^t >   (3t    2x(I^)A/i.J i>At
2 ^ ^ 

16At2  i,j  1+1,j  i'3"1  1+1'J_1  ^  i+1'j  1,j_1 ±+1'i~1 

Given the bottom topography the depth can be found as a function of the 
particle position. 
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Computations  are  started from rest.     First  h*.   is  computed 
using the known bathymetry and particle  positions  at  nAt.     Then 
r$.   values are  computed from the  continuity equation,  Eq.   (4.4). 
Last  the particle positions,   sj J   and pn ^   at  the next time 
step are  computed from the momentum equations,  Eqs.   (4.5) and  (4.6). 
For an analysis of the stability of the scheme the reader is referred 
to Savoie and van de  Kreeke   [1981]. 

5.       NUMERICALLY COMPUTED WATER PARTICLE  TRAJECTORIES  IN A SEMI- 
ENCLOSED BASIN 

Considered is  a semi-enclosed basin of   constant  depth connected 
to the  ocean by an Inlet;   see  Fig.   3.     The  values used in the 
computations for the length of the  basin,  depth of the basin,   and the 
tidal period are respectively L = 6,400 m,  h = 3 m,   T = 43,300 sec. 
The   length and width of the  inlet  are equal to L/2. 

Assuming nonlinear bottom friction, the water motion is described 
by Eqs.   (4.1)  - (4.3).     For  linear bottom friction the appropriate 
expressions for the friction terms are substituted.     The  friction 
terras are further simplified by assuming h+n  » = constant. 

The  boundary conditions  at  the  open boundary are given by the 
particle trajectory p = 2000 sin  (2irt/T)  m.     This  results  in a 
tidal  range  of  approximately 0.7 m when assuming the water level  in 
the  basin to  fluctuate  uniformly.     The  boundary conditions at  the 
closed boundary require that   a particle  initially at  the wall  stays 
at  the wall,  that  is the particle  is  allowed to  slip but  no flow is 
permitted through the wall. 

The trajectories of the particles originally located at the 
position of the water levels  (+ in Fig.   3),  are  computed for different 
values  of the linear friction factor,  the nonlinear friction factor, 
and the   Coriolis  coefficient. 

The equations  are  solved using the explicit   finite  difference 
scheme presented in section 4,  where the time  step  At = 90 sec 
and the  space  step   Aa =   Ab =  800 m,   see  also Fig.   3. 

Examples of  computed particle  paths  are  presented in Figs.   4,   5 
and 6.     In these  figures the particle paths  starting from t  = 0 
(designated by the symbol x) to t  = 2T are  shown.     For linear friction 
and zero  Coriolis acceleration the  computed particle paths are  presented 
in Fig.  4.     The particle paths are virtually straight  lines. 

The straight   line paths  can be explained as  follows.    When 
neglecting the   Coriolis term and assuming linear bottom friction and 
h+n = h = constant  in Eqs.   (4.2) and  (4.3), the  corresponding 
vorticity equation is 

IS    ,    I*L « C5.1) 
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<h+Tl)i,j+l + 

Pi,j  '     '  Ab 
+ - + 

(h+rj). .  s. . (h+n) .., . 
i,j  i,:    1+1.3 

I        I I        I 

+ -+-+-+H 

^        ^^        ^       ^^ 

L 
*   2 3 

•^ Open boundary 

+ Water levels 

y — Particle position in 
x-direction 

| particle position in 
y-direction 

Figure 3,  Configuration of Semi-enclosed Basin 
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Because the basin is initially at  rest,  it  follows from Eq.   (5.1) 
£(t)  = 0.     Thus the  fluid motion is irrotational which allows 
introducing  a  (Lagrangian)  velocity potential   <t>(a,b,t).     Substituting 
in Eq.   (4.1)  yields 

For a basin with dimensions much smaller than the wavelength 

in 
at 

uAr 
Z    cos at (5.3) 

where A„  is the  cross-sectional  area of  the  inlet,  A^ is the  surface 
area of the basin and   $, sinot   represents the motion of the 
plunger.     Combining Eqs.   (5.2)  and  (5.3) 

^c     * 
V2<f) = -    -j^£-     I    coswt (5.4) 

The solution to Eq .   (5.4) is of the  form 

<J>(a,b,t)  =  <f)(a,b)  cosut (5.5) 

It   follows that  the particle velocities 

9s        3 4> 3p        9ij) 
8t   =   3a and   3t  =   3b 

are in phase and thus the path of a particle is a straight line. 

The results when the Coriolis force is added to the linear 
equations is presented in Fig. 5.  The Coriolis acceleration causes 
moving particles to follow elliptical trajectories in the direction 
of the indicated arrows. 

Nonlinear bottom friction is employed to compute the particle 
paths presented in Fig. 6. Particle paths are elliptical as opposed 
to the straight lines in the case of linear friction. When using 
linear friction particles in the basin are found to oscillate about 
their initial locations.  For nonlinear friction particles encounter 
an initial displacement when the computation is first started and 
then oscillate about the new equilibrium position.  The initial dis- 
placement can be explained by means of the equations for the mean 
particle displacement and mean water level. 

To derive these equations the Lagrangian long wave equations, 
Eqs. (3.38) and (3.39) are written in the form 

32s'  , 9p*   _3r,  F£ jte^ (5 6, 
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3n       F£   9p! 

+ ir^r = NL2 (5.7) 

r 3s *     • 9p * 1 
n = NL3 (5.8) 

NLj_, NL2 and NL3 , constitute the (higher order) nonlinear terms.  It 
is assumed that the bay bottom is horizontal, i.e. h(a,b,y) = h.  The 
nonlinear friction is approximated by a linear friction; the difference 
is contained in the terms NLi and NLo. 

Assuming a periodic forcing at the open boundaries in terms of 
s', p' or n, the solution to the Eqs. (5.6) - (5.8) can be written 

s'(a,b,t) = <s!>(a,b) + s£(a,b,t) (5.9) 

p'(a,b,t) = <p'>(a,b) + p£(a,b,t) (5.10) 

n(a,b,t) = <n>(a,b) + TTp(a.b,t) (5.11) 

Sp,   pp and   Hp are  periodic in t  with a period equal to the 
tidal period.     < > denotes  averaging  over the tidal period.     Sub- 
stituting in Eqs.   (5.6)  -  (5.8)  and averaging the equations  over the 
tidal period yields the equations  for the mean particle  displacement 
<s'>,   <p'> and the  mean water  level  <n>. 

3<n> 
9a - <NLX> (5.12) 

3b * <NL2> (5.13) 

fa<sf>        9<p*> 
h ["£— + -gp^ <n> * <NL3> (5.14) 

R»r the  semi-enclosed basin,  when using the  linear equations,  i.e., 
NLj,  NL2  = NL3 =  0,  it   follows  from Eqs.   (5.12)  -  (5.14)  and the 
boundary condition that  <s> = <p>  = <n> = 0 everywhere.     Particles 
thus  oscillate about their original position.    When the values of 
NLj,  NL2 abd NL3 are not   all  zero,  e.g., when using nonlinear friction, 
particles encounter a net  displacement  <s'>  (a,b),  <p'>  (a,b)  and 
will  oscillate  about  this  position. 

6.       SUMMARY AND  CONCLUSIONS 

A rigorous derivation of the Lagrangian long wave equations,  and 
expressions  for the  deformation of  a fluid parcel is presented.     In 
the  derivation no use  is made  of the  corresponding Eulerian form of 
these equations and expressions.     The purpose of this is to preserve  a 
true Lagrangian approach to the problem even though in some  instances 
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it would have been easier to transform directly from the Eulerian 
equations. 

The equations  of motion and  continuity are highly nonlinear in 
Lagrangian form.     The nonlinearities are associated with the de- 
formation of the horizontal  cross-section of a traveling water column. 
The  Lagrangian expressions  for stress,   strain,   rotation,   and vorticity 
remain relatively simple. 

An explicit   finite  difference  solution is presented for the 
simplified set   of equations  i.e.  neglecting the  nonlinear terms except 
for the bottom friction.     The technique  is  applied to a square  bay  of 
constant  depth connected to the ocean by a single inlet.     Particle 
trajectories in the basin are  computed for different values of the 
friction coefficient  and  Coriolis parameter.     The  boundary condition 
i.e.  the particle displacement  in the inlet  is described by a simple 
harmonic function of time.     For nonlinear friction the particles tend 
to follow clockwise elliptical trajectories, whereas for linear 
friction the trajectories become  straight  lines.     The  Coriolis 
acceleration also induces  an elliptical motion.     In the  case  of 
linear friction the  particles  in the  basin oscillate  about  their 
original  locations.     For nonlinear friction there  is  an initial 
displacement  when the  computations are  started,  but  after the first 
tidal  cycle the  particle trajectories  become  virtually identical. 

In summary it   can be  stated that 

1) The numerical  solution to the Lagrangian long wave  equations 
when neglecting the nonlinear terms is not more involved 
than the numerical  solution to the Eulerian equations. 

2) Aside from the difficulties in prescribing the  open boundary 
conditions,  the method of  computing particle trajectories 
using the Lagrangian equations  rather than the  Eulerian 
equations has  a clear  advantage  in that   it  bypasses the  com- 
putation of the velocity field. 
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