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ABSTRACT 

The paper reports the current progress in developing a finite 
element method for the shallow water equations. The main feature of 
the method is the special care given to the advective and diffusive 
parts of the equations, so that it can be of interest to use it when 
dealing with flows strongly influenced by convective and boundary 
layer effects. The solution procedure has been chosen so as to allow 
a calculation with a big number of nodes. 

Section 3 of the paper outlines the method. In section 4, is 
detailed the procedure for the advective terms, involving the 
determination of the characteristic curves. Section 5 is devoted to 
the diffusion and propagation terms. Finally numerical results are 
presented in section 6. 

1. INTRODUCTION 

Environmental hydraulics often requires the calculation of flows 
in complex domains. Moreover, one often wishes a finer 
description for some zones of particular interest, while most of 
the domain can be approximated by a rather coarse grid. The 
finite element method provides such a flexibility and a growing 
interest is taken in its potential. 

However the size of the resulting discrete system restricts the 
possibilities of using it. An interesting approach, presented 
here, leads to consider separate problems on each of the scalar 
variables (water level and flow discharge components) and hence 
allows to reduce the storage requirement. 
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2. NOTATION 

F = Coriolis and friction forces (components F^) 
g - acceleration due to gravity 
h = depth of water 
nm =  average   of  h   in  time 
K = momentum diffusion coefficient 
Q = uh flow rate per unit length (components Q-[) 
u - velocity field (components u-^) 
z -   free   surface  elevation. 

3.   EQUATIONS 

The  shallow  water  equations  consist  of  the  mass  conservation 
equation and two momentum equations I 

dz  +  V.Q = 0 
3t    ^ 

(1) 
9Qi + V.(Qi u) + gh — ~ KAQi * Fi 
9t ^      9xi 

A fractional step algorithm is used to decompose the equations into 
a pure convection system and the remainder. 

Qn,  Zn  being  given  at  time  tn,  the  unknowns  at  time  tn+l, 
Qn+1, Zn+1 are computed by the two following successive steps ; 

- Determination  of  auxiliary  unknown  Qn+"2  solution  of  the 
convection equations ; 

(2) ^_Qi + V .(Qi un) - 0 
3t ^ 

- Resolution of the diffusion and propagation problem 

2-?.     + V.Q   =  0 

(3) 
JL5j       " K AOi   + ghjlz     = Fi 
3t 3xi 

*ith initial conditions Zn, Qn+y 
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4. ADVECTION STEP 

It involves the resolution of equations (2) , which can be 
transformed into equations on velocity, by use of the continuity 
equation ; 

(4) Jui   + u11 '. Vu{ = 0 
9t      ^ 

This form has been prefered to the original form (2) as explained in 
section 6. 

A characteristics method has been used to solve those equations (4). 
It requires two steps : 

- computation of the characteristic curves passing through the nodal 
points ; 

- interpolation at the foot of those curves. 

The method is unconditionally stable and the time step has just to 
be small enough to catch the time variation of the velocity field u. 

a, 

Moreover the amount of computation needed is very reasonable. In 
particular, there is no non-symmetric system to assemble and solve 
at each time step, as would appear in a standard implicit method. 

As for accuracy, it is quite satisfactory, although somewhat 
depending on the time-step : the only significant error being made 
when performing the interpolation at the foot P; of the 
characteristic, the accuracy decreases when Pj is far from a 
mesh-point, particularly when using a linear interpolation. Finally, 
conservativity is not ensured by the scheme ; this is probably the 
main drawback of the method. 

This technique has been applied for a long time in the solution of 
the Navier Stokes equations and is described in more detail in [1]. 
Some more research is done on the subject [2], 

5. DIFFUSION AND PROPAGATION STEP 

An implicit discretization has been chosen for system (3) except for 
the non linear term ghVZ which is partly explicited. There is no 
need for a second order scheme in time for such long waves as the 
tide. 

If we drop, for sake of simplicity, the superscripts n+1, the system 
to solve in this step is of the form ; 

(5) az + V .Q = R 
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(6) aQ - KAQ  + ghmVz =  T 
a, ^ % 

with   ;f,= ij   R=izn,   and   T  = J Q   + F^  -  g(fcn  -hm)V zn 

DT DT a,       DT ^       ^ 

(hm being the average in time of h, that is a function of space 
coordinates   only). 

The discretization of equations (5), (6) with their boundary 
conditions (Q given) yields to a large size linear system. A natural 
idea to reduce this size, is to eliminate Q between equations (5) 
and (6). This is achieved by applying the divergence operator to (6) 
and  plugging   (5)   into  the  result.   The  equation  obtained   is   ; 

(7)a
2z  - V.   (Ka + g  hm)V z  = W 

with   ;   W = aR " KA. R "V.T. 
a, 

Equation (7) is an elliptic equation, giving by discretization a 
symmetric matrix. It can easily be solved if a boundary condition is 
provided for z. If so, Q can be straight forwardly computed from 
equation (6) where the teVm ghmVz is now a known function and can 
be rejected into the right hand side. With Dirichlet boundary 
conditions, equation (6) decomposes into two decoupled equations, 
one for each component Qi of Q leading to the same symmetric 
matrix for the discrete system.   ^ 

The problem then amounts to the determination of the trace of z on 
the boundary. The procedure used for this purpose is an extension of 
the technique proposed by Glowinski-Pironneau [3] for the Stokes 
problem. It is described in detail in [5]. 

This technique is advantageous on the point of view of computational 
efficiency. Two "domain" matrices have to be stored, one for the 
variable z, another for each component of Q (it is the same matrix 
for the two components). They are symmetric and sparse and small 
enough to be processed by an in-core solver such as an incomplete 
Choleski preconditioned conjugate gradient. In addition, the matrix 
of the boundary operator has to be factorized and stored. 

NUMERICAL RESULTS 

Several applications have been performed, from a very schematic 
case, in order to have a first view on the possible problems, to a 
realistic complex one, to give a more comprehensive test of the 
method. 
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6.1. Schematized Massachussets Bay 

In this first experiment, emphasis has been laid on the general 
behaviour of the method rather than the comparison with actual data. 
Thus neither the friction and Coriolis force, nor the varying bottom 
topography were simulated. The domain was coarsely approximated by a 
rectangle (fig.l) divided into 192 triangular elements with 
respectively 119 and 429 nodes for piecewise linear and quadratic 
approximations. Both components of the flow discharge were 
prescribed on the boundaries ; this discharge was taken to be zero 
on the land limits, and was schematized on the ocean limit by a 
sinusoidal uniform flow. 

Results as regards current fields and free surface elevation (fig. 2 
and 3) were found to be quite satisfactory ; in particular global 
mass conversation has been insured at less than 1% of the total mass 
flux over a whole tide. 

Teachings of this first application are as follows ; 

. linear and quadratic approximations for the water height, together 
with quadratic approximation for the flow discharge, have given 
closely the same results ; 

. there exists some stability condition for the diffusion step ; the 
nondimensional number (K.DT/DX^) has to be more than about 
10"^" to avoid oscillations of the computed solution (probably 
because of the conflict arising between a nearly hyperbolic system 
to solve and boundary conditions related to the diffusion, i.e. 
prescribed velocity on the limits) ; 

. some kind of "overshoot" can appear in the advection step near the 
boundary when the flow gets out, due to a bad property of the 
quadratic interpolation on the flow discharge. 

6.2. Dunkirk outer harbour 

The second application, which is less schematic, concerns the 
computation of the tidal flow pattern in the vicinity of the new 
outer harbour of Dunkirk, located on the french coast of the North 
Sea. 

This example has been chosen for two main reasons ." 

. the shape of the domain and the complexity of the laying out of 
the limits give the typical case where a finite clement method 
turns out to be specially suitable (good boundary representation 
and local refinement facilities) and provide a rather severe test 
of the model ; 
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this case has been previously studied by means of a scale model 
and of a finite difference model ; so there exist references to 
which compare the results of the finite element model. 

The finite element grid (fig.4) has been generated automatically by 
a program developed in our laboratory. As it can be noticed from 
this illustration, a special mesh refinement has been introduced 
near the limits, in order to obtain a better consideration of the 
boundary conditions (which is particularly useful for the land 
boundaries). 

In this experiment a piecewise quadratic approximation, has been used 
for each variable ; there are about nine hundred triangular elements 
and two thousand calculation nodes. 

The characteristics of the computation are as follows ; 

. tide range is about five meters ; 

. maximum velocity is about 1,5 m/s ; 

. tide and current are in phase (that is to say that the tide wave 
is here quite purely progressive) ; 

. eddy viscosity coefficient is equal to 5 m^/s • 

.   time step is sixty seconds  and Courant number for propagation 
varies locally from 1 to 5. 

Finally both components of the flow discharge are prescribed on the 
boundaries. 

In fact two computations have been carried out successively in this 
case of Dunkirk ; the first one under schematic conditions and the 
second one in a more realistic way. 

6.2.1. Sc_hema_t i_c £ompjjt a_t_ion 

In the first trial the flow discbarge is assumed to be sinusoidal 
and parallel to the upper limit ; the bottom is flat and bed 
friction is not considered, just as in the example of Massachussets 
Bay. 

Some instabilities appeared in the current field during the 
computation ; the problem turned out to come from the advection 
step, solved at first on the flow discharge Q ; 

3Qi  + u11 . V Qi = " Qn V -un 

The discontinuity of the term in the right hand side was found to be 
responsible for the instabilities. When using the formulation on 
velocity only, those instabilities actually disappeared. 

Fig. 5 shows the evolution of the flow pattern in the vicinity of 
the harbour at the beginning of the flood current (slack occurs 
about three hours before high tide) : the flow deflection in front 
of the harbour and the formation of two eddies can be noticed ; 
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. The first one in the harbour entrance ; it becomes weaker and 
weaker as the harbour fills in. 

. The second eddy downstream the east jetty expands gradually 
eastwards and in fact it will fill at the end of the flood the 
whole eastern part of the domain because of the absence of bed 
friction and because the boundary conditions don't allow it to get 
out. 

Fig. 6 points out in the whole domain the same phenomenon during the 
ebb ; an eddy appears at the beginning of the ebb on the left of the 
west jetty and expands progressively till the end of the ebb. 

Finally mass conservation was found to be as satisfying as for the 
first example ; here also the global error regarding the free 
surface elevation over one tide is less than 1 % of the tide range. 

6.2.2. Rea.l_is_tic computation 

A second computation has been carried out after the insertion in the 
model of the bed friction and of the variability of the bed 
topography. 

Fig. 7 exhibits the bathymetry in the vicinity of the harbour : the 
depths are quite variable, especially because of the navigation 
channel for oil tankers ; the steepness of the edges of the channel 
(about 1;10) is in fact a severe condition for the shallow water 
equations. 

Boundary conditions are now deduced from the results of a previous 
computation made with a finite difference method on a larger domain. 

The computation has been worked out during more than one tide, and 
the re suits have been compared to the data obtained by photograph s 
of surface floats on the scale model, built about twelve years ago 
for the study of the new outer harbour. 

Fig. 8 to 10 display this comparison during the most interesting 
period, from the beginning of the flood till high water. 

On fig. 8, at the beginning of the flood, an eddy appears in a 
similar way on both models, just behind the end of the west jetty, 
while the harbour fills in ; half an hour later, both eddies have 
shifted and spread out likewise. 

Afterwards (fig. 9) the eddy expands gradually till it covers the 
whole entrance in both models, with perhaps a slight difference in 
the shape. The flow deflection due to the harbour can be noticed 
farther than one kilometer away from the entrance in both cases. 
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From one hour before high water till high water (fig. 10) the eddy 
remains stable ; downstream the harbour, a slight flow separation 
can be noticed, but the computation does not develop a big eddy as 
in the case of the first computation (fig. 5). 

The mass conservation is less accurately obtained than in the 
previous experiments ; the global level error over one tide is 
about 3 % of the tide range ; this seems to be due to the steepness 
of the sea bed near the breakwaters ; the problem can probably be 
overcome by taking a more severe threshold of convergence in the 
numerical resolution of the linear systems. 

7. CONCLUSION 

Compared to the classical finite difference method, which is now 
currently used to solve the shallow water equations, this finite 
element method presents many advantages, such as a better 
description of the boundaries and a greater flexibility of the 
grid ; on the other hand, the implementation of the model is rather 
longer and more complex, and involves a bigger consumption of 
processing time ; nevertheless, due to the special care given to 
reduce the size of the systems to be solved, the in-core memory 
requirements are quite reasonable. As an example computation over 
one tide (12 h 24 mn) using nearly 2 000 nodes of discretization 
and a time step of sixty seconds has required about 2 hours of CRAY 
1 processing time and 1 000 K bytes of in-core memory. 

Numerical experiments have clearly shown that even under rather 
severe conditions the model has a nice behaviour and exhibits a fair 
comparison with experimental data . 

At present, improvements are in progress, with the implementation of 
an incident wave condition and the consideration of the influence of 
wind stress and atmospheric pressure field. The model will soon be 
used on a domain covering the whole English Channel up to the edge 
of the continental shelf (fig. 11), with two purposes : 

- firstly to examine the impact of a possible tidal power plant on 
the tidal pattern in this area ; 

- secondly to study the generation and propagation of storm surges 
in the English Channel. 
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