
AUTOMATED DIGITAL SIMULATION OF TIDES S LONG WAVES

R.F. Henry*

Abstract

A system for indirect programming of shallow-water models is
discussed, particular attention being given to facilitating successful
operation by novice users. Pre-developed programs are used to check
numerical coding of model layout, to execute the finite-difference
computations required at each time step and to analyse the computed
surface elevations and velocities. Many error-prone steps are thus
eliminated and model development is speeded for modest increase in
computation costs.

1. Introduction

This paper describes a method which simplifies development of
numerical models of long-wave phenomena such as tides, tsunamis and
storm surges. The irregular geometry of most coastal seas complicates
the programming of numerical models severely, even for the simplest
finite-difference representations of the governing shallow-water
equations. The principal aim of the system of programs described here
is to automate the detailed programming steps necessary to fit a
finite-difference scheme to a particular coast. The availability of
such programs permits even an inexperienced programmer to develop a
working model quickly and, at the subsequent calibration and
verification stages, allows experimental changes, such as relocation
of boundaries, to be made rapidly without extensive debugging checks.
The modeller is thus freed from programming difficulties and delays
and is able to concentrate on scientific aspects of the work.

The basic concept used is that, after a suitable grid has been
laid out to cover the coast in question, instead of programming the
specific computational steps necessary for each variable on the grid,
a numerical code is assigned to each variable to indicate the nature
of that point and the type of calculation to be carried out there at
each time step. In this way the task of programming the
finite-difference calculations is split into two distinct stages,

a) numerical coding of coastline layout
b) development of a general time-stepping subroutine, which,

given the corresponding code, performs the computation
required at each grid-point under the particular
finite-difference scheme adopted.

The advantage of this approach is that step b) has to be tackled

* Institute of Ocean Sciences, Sidney, B.C., Canada.

203

204 COASTAL ENGINEERING—1982

only once for a particular finite-difference scheme, and when the
time-stepping subroutine has been fully checked out, a major source of
programming errors is eliminated from all models employing it
subsequently. Provided that the same governing equations hold, only
stage a) has to be carried out when a new model is developed and as
shown later, a graphical checking procedure can be used to ensure that
no errors are made at that stage.

Leendertse (1967) used numerical coding to specify location of
model boundaries but Heaps (1969) seems to have been first to perform
all computations on the grid indirectly via numerical codes. Abbott,
Damsgaard and Rodenhuis (1973) announced an extensive proprietary
software package for indirect programming of shallow-water models, but
limited information about this system and its later developments has
appeared in the open literature. The work described in the present
paper essentially extends Heaps' method, increasing the practicability
by using a simpler grid, by breaking the coding process down into
stages of which only the simplest has to be carried out by the user
and by providing graphical means for checking the coding. The result
is a set of programs, which can be used easily in 'black-box' fashion
by inexperienced programmers but which are straightforward enough to
be altered fairly readily by more experienced users to suit special
requirements.

Unfortunately, the combination of grid and difference-scheme used
by Heaps proves rather cumbersome for indirect programming. Because
both components are defined at all velocity-points, 19 distinct types
of velocity point are possible, even though only two types of boundary
are permitted. This complexity makes it difficult to code the model
geometry correctly. The Richardson grid (Figure 1) used here is
better suited to indirect programming, as far fewer distinct
configurations can occur at boundaries. This has facilitated
development of a plotting program to permit visual checking of coded
model layout. A plot of the model boundaries is produced from the
allotted numerical codes. Comparison with the original grid diagram
then quickly reveals any errors in coding. If the model boundaries
are altered during development, the revised layout can be checked
similarly. This graphical feedback makes indirect programming
considerably more practicable.

To summarize the procedure, the modeller is required to choose a
Cartesian grid of suitable orientation, size and spacing for the water
body in question and to provide a corresponding array of mean water
depths. The position and nature of the various boundaries are then
coded numerically as described later and the coding is checked
visually using a pre-developed graphical program. The numerical model
is then programmed, all the necessary finite-difference calculations
being handled by a pre-developed time-stepping subroutine. The
modeller must supply a subroutine which provides values of any
time-dependent forces or boundary conditions influencing the water
body.

A model programmed using this technique takes roughly 20% more
computing time than an equivalent model in which the finite-difference
equations are programmed specifically for the particular grid in

TIDES AND LONG WAVES SIMULATION 205

•AX-

Ui-ij+i i7i-i,j+i Ui,j+i i7i,j+i Ui+^j+i i7i+i,j+i
+ o + o + o +

Vi-I,j + I
• x

Vi,j+I
X x

Ui-|,j TJi-l.j Uij 7)jj Uj+|,j 17i+|,j
+ 0 + o + o+Ay

.V--1A. Vij
X —

Vi+I,j
• X

T
Ay

1
Ui-i,j-i ''Ji-i.i-i Ui.j.i -rji.j-i Uj+i j.i i7i+i,j-i
+ o + o + o +

Vi-I.j-I
• X

Vi,i-i
• X -V^±

y.v.Ja

X,U,i

o -q, elevation point

+ u, velocity point

x v, velocity point

Fig. 1. The Richardson Grid

206 COASTAL ENGINEERING—1982

question, but the saving in initial programming effort and subsequent
debugging time is substantial even for an inexperienced programmer.
Memory requirements are increased by the need to store the code arrays
required. Full details of the various programs which have been
developed to implement the graphical and finite-difference operations
discussed above are given in Henry (1982).

2. Governing Equations

The methods described in this paper apply to problems governed by
the partly linearized shallow water equations

nt = -(du)x - (dv)y (1)

ut = " 9nx + fv " p(U)+ Q(U) (2)

fu - F<v>+ G<
v' gny - fu - F*"+ G*" (3)

where

n(x,y,t) = elevation of water surface above mean level
u(x,y,t) = depth-averaged velocity in x-direction
v(x,y,t) = depth-averaged velocity in y-direction
d(x,y) = mean water depth
x,y = Cartesian coordinates in horizontal plane
f = Coriolis coefficient (assumed constant)
g = acceleration due to gravity
t = time

F(u'and F(
V
) represent bottom friction terms. One stepping

subroutine makes provision for friction linearly proportional to
velocity, i.e. F(

U
) = ru, F'

V
) = rv, while another uses the more

commonly assumed quadratic friction forms:

ku(u2+ v2)1/2 , N kv(u2+ v2)l/2
F(u) = ; F(

V
) = (4)

d d

The respective friction coefficients r and k are currently taken to be
uniform throughout the model, but later versions of the stepping
subroutines will permit the friction coefficient to vary with
position. Also it is intended to supply a version using (d+n) in
place of d in the denominators of (4), in order to simulate fluid
behavior in very shallow water more accurately. By design, these
stepping subroutines are readily interchangeable, so that variations
on the underlying finite-difference scheme can be tried in the same
model with negligible reprogramming. It would be possible to write a
master stepping subroutine containing all options likely to be
required, but this would be less economical in computing time.

TIDES AND LONG WAVES SIMULATION 207

The terms G(") and G(V) in equations (1) - (3) represent
relevant forcing effects due to external influences. In general these
will be both time- and space-dependent. Appropriate values for these
must be specified for the particular problem considered through a
user-provided subroutine.

3. The Richardson-Sielecki Finite-Difference Scheme

The simple Richardson grid shown in Figure 1 was chosen as the
basis for the finite-difference scheme because it minimizes storage
requirements and permits particularly simple simulation of coast-
lines. At interior points of the grid, equations (1) to (3) are
represented by Sielecki 's (1968) scheme.

'Hj " n^ _ (du +di+1J)Vl,j -(Vij + dij»i
At 2.AX

(d..+ d. . ,)v. . , - (d. . , + d..)v..
- *"J 1 »J+1 1 >J + 1 1 'J-1]J TJ

2.Ay

(5)

1LU1 = - g nij " *U1'* + fv - F(u) + G(") (6)
At AX ij lj ij

IlLlllA = - g nij " ^J-1 - fu' - F(v) + G(») (7)
At Ay ij ij ij

where
At = time step

AX,Ay = grid interval sizes in in x,y directions respectively
d-j j = mean water depth at elevation point n-jj

1
i,j-l + ul+l,j-l + uij + ui+l,jl

vij =7 tvi-l,j + vij + Vi-U+1 + vi,j + ll

Primes indicate variables updated during the current time step;
unprimed variables are those evaluated at the previous step. The use
of old (unprimed) values of v in the Coriolis term in (6) and new
(primed) values of u in the corresponding term in (7) eliminates the
need to store any but the most recently updated values of each
variable, provided that the equations are applied in the order given,
that is, at each time step, all nij are updated, then all of the
u-jj, and finally all the v-j j. The same conclusion applies if

208 COASTAL ENGINEERING—1982

evaluated in the order n>v,u, using old values of u in the v-equation
and new values of v in the u-equation. To reduce possible bias, the
stepping subroutines provided evaluate the variables in the order n',
u', v', on odd-numbered steps and n'» v',u', on even-numbered steps.

Sielecki showed that the condition for stability of the above
scheme, in the absence of boundaries, is

At < **i*y (8)
- [9dmax(Ax2 + Ay

2)]V2

4. Numerical Coding of Model Geometry

The choice of grid for a model is necessarily a compromise among
many requirements. The location and orientation of the grid is
influenced mainly by the accuracy with which the coastlines can be
approximated by line segments of the grid. This fit can usually be
improved by increasing the grid resolution, which implies using more
variable points and taking shorter time steps to maintain numerical
stability, thus raising computing costs. Once the grid has been
chosen, as objectively as possible, all variable points on the grid
are allotted appropriate (primary) integer codes. An elevation point
n -,- -; is given the code number (KE)-jj = 1 if the point lies on a
sea-boundary along which surface elevation is to be specified as a
function of time; any other elevation point has the code (KE)-jj = 0.

Points on the grid where velocity components u-jj or v-jj are
defined are each allotted a corresponding subscripted code (KU)-jj or
(KV)-jj which can have the following values:

Primary codes KU.KV Location of Velocity Point
at Velocity Points

1 on line segment representing land boundary
(coastline or island)

2 on line segment representing spit or causeway
with water on both sides

3 at sea boundary where velocity is to be
specified

4 on radiating sea boundary (discussed below)

0 elsewhere

The allocation of these codes will now be illustrated with the
aid of the very simple example in Figure 2(a). Here, the velocities
ul 1 > U12> U13 on *ne sea-boundary at the left side and vm, vsi at the
bottom edge of the grid are specified functions of time derived from
current meter observations. Elevations n , n71> n7u

at the
right-hand sea boundary are also known functions of time, obtained
from water level gauges.

The upper boundary on which points v ,v are located is a
4 6 56

TIDES AND LONG WAVES SIMULATION 209

(a!

= Specified sea boundaries
—- Radiating sea boundary

(b) KE (for T/- points)

5 0 0 0 0 0 0 0

4 0 0 0 0 0 0 1

J 3 0 0 0 0 0 0 1

2 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

1 2 3 4
I

5 6 7

(d) KV (for v-points)

(c KU (for u-points) 6

5

0

0

0

0

0

1

4

0

4

0

0 0

1 1 5 0 0 0 l 0 1 0 0

4 0 0 1 OOOO 0 4 1 1 0 0 0 0 0

J 3 3 0 0 0 0 0 0 0 J 3 0 0 0 0 0 0 0

2 3 0 0 0 0 0 0 0 2 0 2 0 0 0 i 1

1 3 0 0 0 0 1 0 0 1 1 1 1 3 3 0 0

1 2 3 4 5 6 7
I

8 1 2 3 4
I

5 6 7

Fig. 2. Sample Water Body and Primary Codes

210 COASTAL ENGINEERING—1982

radiating sea boundary. Where there are good grounds for assuming
that no waves enter the model area from an adjacent water body, it is
appropriate to use a radiation condition on the sea boundary between
the two. This permits waves reaching the sea boundary from the
interior of the model to pass out of the model domain.

When choosing the model grid initially, radiating sea boundaries
parallel to the x-axis of the model should be placed to run through
v-points on the grid (as illustrated in Figure 2). Similarly, those
parallel to the y-axis should run through u-points. It is assumed
that the radiation problem can be treated one-dimensionally at each
velocity point on the sea boundary and thus that the surface elevation
and normal velocity at the boundary are related by

outward normal velocity = (g/d)l/2 x elevation

Since there are no elevation points actually on the boundary, the
nearest interior elevation value is taken instead, so that the
formulas used in the stepping subroutines for u-points on radiating
boundaries facing in the positive or negative x-direction are
respectively:

"ij = (9/di-i,j)1/2 . nui.j
or

Uij = - (g/d-j j)!/2 . nij

Similarly, at radiating sea boundaries facing in the positive or
negative y-directions, the formulas used are respectively:

vij = (9/di,j-l)1/2 • ni.j-i
or

vij = - (g/d-j j)1/2 . nij

For example, in the model shown in Figure 2, at each time step,

the new velocity values v , v , on the radiating boundary are
4 6 56 ii

found from the newly-updated elevations n 5> n by putting

\6 = (g/d,5)
1/2 • <5; v;6 = (g/d55)i/2. n;5

This simple but effective radiation condition was introduced by
Heaps (1974). In practice, transmission across the boundary is nearly
complete for waves impinging normally on the boundary, but there is
considerable unwanted reflection when the angle of incidence exceeds
45°. Tests show that use of the radiation condition can reduce the
permissible time step by as much as 50%. Equation (8) should
therefore be amended to

At
AX. Ay

2fgd Ux2 + Ay2)]1/?
max

TIDES AND LONG WAVES SIMULATION 211

Manual preparation
of primary codes

TGraphical entry of |
! model geometry i

I
Reduction to i
primary codes !

I
Graphical check of

primary codes

Conversion to
intermediate codes

Model using stepping
subroutines with linear
or quadratic friction

i Conversion to i
"1 secondary codesj

i Model using stepping |
| subroutine with advection I
i and quadratic friction !

Completed.

[_ j Under development.

Fig. 3. Preparatory Steps

212 COASTAL ENGINEERING—1982

to ensure stability in models using the above type of radiating
boundary.

There is to be no flow across any 'land' boundary in the model
and consequently, all the corresponding velocity components, e.g. U34,
u 6i> V

H>
v2<t> are t0 be set at zero. Also, v22 is zero, as there

can be no transverse flow at the line segment representing the small
island where v22 is situated.

The arrays of numerical codes which describe the geometry of this
model, according to the list given above, are shown in Figures
2(b),(c) and (d). This coding stage of the procedure is represented
by box A in Figure 3, which shows the sequence of preparatory steps
required for a model. Currently, a file containing the numerical code
arrays has to be prepared by the modeller, but work is in progress
using interactive graphics (E in Figure 3) to replace manual entry.
The coastlines and superposed grid are displayed and the grid segments
which are to represent boundaries are then selected and designated
using a cursor or light pen. The nature of each boundary is entered
at the same time through the keyboard. However, manual entry of the
primary codes, which will remain necessary in the absence of suitable
graphics hardware, is very straightforward, due to the limited number
of codes involved and the provision of a program for graphical
checking. The latter requires only an off-line graphics facility.

5. Graphical Check of Primary Codes

Correct description of the location and types of the model
boundaries is of such obvious importance that a program has been
developed for plotting the model layout defined by the allocated
primary codes. The plotting scale used can be set equal to that of
the chart on which the model grid was set out, so that by overlaying
the plot on the chart the correctness of the numerical coding can be
checked very readily. It is also worthwhile repeating this graphical
check (C in Figure 3) whenever changes are made to the primary codes,
for whatever reason.

Figure 4 shows the plot thus produced from the primary codes
given in Figures 2 (b), (c) and (d). The boundaries are distinguished
by use of the following line codes:

 closed boundaries

 spit or causeway

- •• sea boundary with specified variable

 radiating sea boundary

The plotting program uses standard CALCOMP plotting subroutines.

6. Conversion from Primary to Intermediate Codes

Although the primary codes describe fully the location and type
of every boundary, they do not contain certain information about
relative locations required by the time-stepping finite-difference

TIDES AND LONG WAVES SIMULATION 213

Fig. 4. Layout of Sample Model as Plotted from Primary Codes

214 COASTAL ENGINEERING—1982

subroutines. For this reason, another program is used (B in Figure 3)
to convert the primary codes into a more numerous set of
'intermediate' codes. The latter distinguish, for example, between
inactive variable points on land (or outside the model domain) and
active points in the model interior. The primary to intermediate
conversion program also works out the bounds of the area of grid
containing active variable points, thus reducing the amount of
computation required in the time-stepping subroutines at each
time-step. Users generally need not concern themselves with details
of the intermediate codes and scanning bounds.

Boxes G and H and Fig. 3 refer to programs being developed to
permit substitution of a stepping subroutine based on the full
non-linear shallow-water equations in place of the partly linearized
versions presently available. An even fuller set of codes, here
termed 'secondary', are required in that case to cope with the variety
of special cases which occur in the vicinity of boundaries.

7. Programming a Model

After the above preparatory stages of coding, checking and code
conversion have been carried out, one proceeds very much as in
programming a model by the usual direct method, except that the
intricate programming of the finite-difference calculations is
replaced by a simple call to the appropriate time-stepping
subroutine. The other major difference is that time-dependent forces
and boundary values are supplied at each time-step by calling a
subroutine which loads specific storage locations with this data,
rather then by summoning values directly where required in the
finite-difference coding.

It is useful to visualize the linear arrays used to store
boundary values as lying parallel to the boundaries on which the
values are used, as shown in Figure 5, which refers to the simple
example of Figure 2. By having each array the same size as its
respective side of the model grid, the same numbering can be used for
both. Thus in the example, the values to be supplied at each step for
ujj are stored in (BL)j, j = l,2,3; those for v-j j, in (BB)-j ,

i = 4,5 and those for n7j in (BR)j, j=2,3,4. The storage arrays,

which are a fixed feature of the time-stepping subroutines, can be
used for holding elevation or velocity values as required for the
model in question. Cases where this storage arrangement could lead to
values for two different boundary points being allotted to the same
storage location hardly ever seem to occur in practice and have not
been catered for. Values supplied by the user at each time-step for

the forcing terms G(
U
) and G(

V
) (equations 2 and 3) at every

relevant variable point are stored in two-dimensional arrays where
they are subsequently accessed by the stepping subroutine.

Some of the storage locations just discussed go unused in most
models - for example, none of the boundary storage array BT pertaining
to the upper boundary in Figure 5 is used - but this is a reasonable
price to pay for other conveniences of the method.

TIDES AND LONG WAVES SIMULATION 215

BT

6

5

4
BL

J 3

~tl
-II !

1

r II
II

2
II

_ll
1

1
I = X =

• —
BB

1 2 3 4 5 6 7
I

BR

Fig. 5. Storage of Boundary Input Values for Sample Model

216 COASTAL ENGINEERING—1982

t Input model dimensions,
and run parameters

New run -(New run or restart?)- Restart

/input primary codes,
convert to intermediate

codes and store

'Input intermediate
codes

Set up initial conditions -o Input restart data

From initial time
to final time
in steps At

Call user subroutine
to compute updated forcing
terms and boundary values

Call stepping subroutine
to advance model solution
through one time step

Output t,TJ,U,V at
specified intervals

Save t,7j,u,v as
restart conditions

 i

(End)

Fig. 6. Typical Model Flowchart

TIDES AND LONG WAVES SIMULATION 217

Figure 6 shows a simplified flowchart suitable for many models.
The conversion from primary to intermediate code is shown included in
the model program, since in many cases, modellers make numerous
boundary changes during model development. Some further details are
given in Henry (1982) and the results of an actual run with the model
shown in Figure 2 are listed there for check-out purposes.

8. Further Developments

Besides extensions already mentioned, a number of auxiliary
programs are being developed, mainly for performing standard analyses
of results from production runs with the completed model. For tidal
studies there is a program which carries out harmonic analysis of
computed currents and surface elevations, while for storm surge models
another program is being developed to log the maximum height reached
at each elevation point during any specified period. Since the model
shape is already expressed in the primary codes, the latter are used
to confine the analysis computations to active variable points, to
organize the layout of printed results of the analyses, and also to
produce plots of the boundaries in subsequent graphical programs, such
as one which can contour any designated scalar field computed during
the analysis.

9. Conclusions

The method of programming shallow water models discussed in this
paper is designed to answer a need for rapid, error-free application
of well-known finite-difference methods to different coastal areas.
The basic concept involved, indirect programming or selection of
algorithms via numerical codes, has attracted interest for a number of
years but has not come into widespread use. This paper proposes some
improvements which should help to make indirect programming into a
really practicable tool. These include:

a) the number of different numerical codes needed to describe
the model layout is kept very small, the more numerous set
of codes required to control the finite-difference
computation being produced automatically by a pre-developed
program;

b) the user's choice of codes to define the layout is checked
graphically for errors;

c) the finite-difference scheme employed can be changed by
replacing one subroutine by another.

218 COASTAL ENGINEERING—1982

References

Abbott, M.B., A. Damsgaard and G.S. Rodenhuis (1973), System 21,
"Jupiter" (A Design System for Two-Dimensional Nearly Horizontal
Flows), J. Hyd. Res., Vol 11, No.l, pp 1-28.

Heaps, N.S. (1969). A Two-Dimensional Numerical Sea Model, Phil.
Trans. Roy. Soc, London, Ser. A, Vol. 265, pp. 93-137.

Heaps, N.S. (1974). Development of a Three-Dimensional Numerical
Model of the Irish Sea. Rapp. P.-v. R£un. Cons. Int. Explor.
Mer, Vol. 167, pp. 147-162.

Henry, R.F. (1982) Automated Programming of Explicit Shallow-Water
Models. Part 1. Linearized Models with Linear or Quadratic
Friction, Institute of Ocean Sciences, Sidney, B.C., Canada.
Can. Tech. Rept. Hydrogr. Ocean Sci., No.3, 70 pp.

Leendertse, J.J. (1967). Aspects of a Computational Model for Long-
Period Water-Wave Propagation. RAND Corp., Santa Monica.
RM-5294-PR, 165 pp.

Sielecki, A. (1968). An Energy-Conserving Difference Scheme for the
Storm Surge Equations. Mon. Weather Rev., Vol. 96, pp. 150-156.

