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Abstract 

A system for indirect programming of shallow-water models is 
discussed, particular attention being given to facilitating successful 
operation by novice users. Pre-developed programs are used to check 
numerical coding of model layout, to execute the finite-difference 
computations required at each time step and to analyse the computed 
surface elevations and velocities. Many error-prone steps are thus 
eliminated and model development is speeded for modest increase in 
computation costs. 

1. Introduction 

This paper describes a method which simplifies development of 
numerical models of long-wave phenomena such as tides, tsunamis and 
storm surges. The irregular geometry of most coastal seas complicates 
the programming of numerical models severely, even for the simplest 
finite-difference representations of the governing shallow-water 
equations. The principal aim of the system of programs described here 
is to automate the detailed programming steps necessary to fit a 
finite-difference scheme to a particular coast. The availability of 
such programs permits even an inexperienced programmer to develop a 
working model quickly and, at the subsequent calibration and 
verification stages, allows experimental changes, such as relocation 
of boundaries, to be made rapidly without extensive debugging checks. 
The modeller is thus freed from programming difficulties and delays 
and is able to concentrate on scientific aspects of the work. 

The basic concept used is that, after a suitable grid has been 
laid out to cover the coast in question, instead of programming the 
specific computational steps necessary for each variable on the grid, 
a numerical code is assigned to each variable to indicate the nature 
of that point and the type of calculation to be carried out there at 
each time step. In this way the task of programming the 
finite-difference calculations is split into two distinct stages, 

a) numerical coding of coastline layout 
b) development of a general time-stepping subroutine, which, 

given the corresponding code, performs the computation 
required at each grid-point under the particular 
finite-difference scheme adopted. 

The advantage of this approach is that step b) has to be tackled 
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only once for a particular finite-difference scheme, and when the 
time-stepping subroutine has been fully checked out, a major source of 
programming errors is eliminated from all models employing it 
subsequently. Provided that the same governing equations hold, only 
stage a) has to be carried out when a new model is developed and as 
shown later, a graphical checking procedure can be used to ensure that 
no errors are made at that stage. 

Leendertse (1967) used numerical coding to specify location of 
model boundaries but Heaps (1969) seems to have been first to perform 
all computations on the grid indirectly via numerical codes. Abbott, 
Damsgaard and Rodenhuis (1973) announced an extensive proprietary 
software package for indirect programming of shallow-water models, but 
limited information about this system and its later developments has 
appeared in the open literature. The work described in the present 
paper essentially extends Heaps' method, increasing the practicability 
by using a simpler grid, by breaking the coding process down into 
stages of which only the simplest has to be carried out by the user 
and by providing graphical means for checking the coding. The result 
is a set of programs, which can be used easily in 'black-box' fashion 
by inexperienced programmers but which are straightforward enough to 
be altered fairly readily by more experienced users to suit special 
requirements. 

Unfortunately, the combination of grid and difference-scheme used 
by Heaps proves rather cumbersome for indirect programming. Because 
both components are defined at all velocity-points, 19 distinct types 
of velocity point are possible, even though only two types of boundary 
are permitted. This complexity makes it difficult to code the model 
geometry correctly. The Richardson grid (Figure 1) used here is 
better suited to indirect programming, as far fewer distinct 
configurations can occur at boundaries. This has facilitated 
development of a plotting program to permit visual checking of coded 
model layout. A plot of the model boundaries is produced from the 
allotted numerical codes. Comparison with the original grid diagram 
then quickly reveals any errors in coding. If the model boundaries 
are altered during development, the revised layout can be checked 
similarly. This graphical feedback makes indirect programming 
considerably more practicable. 

To summarize the procedure, the modeller is required to choose a 
Cartesian grid of suitable orientation, size and spacing for the water 
body in question and to provide a corresponding array of mean water 
depths. The position and nature of the various boundaries are then 
coded numerically as described later and the coding is checked 
visually using a pre-developed graphical program. The numerical model 
is then programmed, all the necessary finite-difference calculations 
being handled by a pre-developed time-stepping subroutine. The 
modeller must supply a subroutine which provides values of any 
time-dependent forces or boundary conditions influencing the water 
body. 

A model programmed using this technique takes roughly 20% more 
computing time than an equivalent model in which the finite-difference 
equations are    programmed specifically for the particular grid in 
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question, but the saving in initial programming effort and subsequent 
debugging time is substantial even for an inexperienced programmer. 
Memory requirements are increased by the need to store the code arrays 
required. Full details of the various programs which have been 
developed to implement the graphical and finite-difference operations 
discussed above are  given in Henry (1982). 

2. Governing Equations 

The methods described in this paper apply to problems governed by 
the partly linearized shallow water equations 

nt = -(du)x - (dv)y (1) 

ut = " 9nx  + fv " p(U)+ Q(U) (2) 

fu - F<v>+ G<
v' gny  - fu - F*"+ G*" (3) 

where 

n(x,y,t) = elevation of water surface above mean level 
u(x,y,t) = depth-averaged velocity in x-direction 
v(x,y,t) = depth-averaged velocity in y-direction 
d(x,y) = mean water depth 
x,y = Cartesian coordinates in horizontal plane 
f = Coriolis coefficient (assumed constant) 
g = acceleration due to gravity 
t = time 

F(u'and F(
V
) represent bottom friction terms.  One stepping 

subroutine makes provision for friction linearly proportional to 
velocity, i.e. F(

U
) = ru, F'

V
) = rv, while another uses the more 

commonly assumed quadratic friction forms: 

ku(u2+ v2)1/2      , N   kv(u2+ v2)l/2 
F(u) =      ; F(

V
) =         (4) 

d d 

The respective friction coefficients r and k are currently taken to be 
uniform throughout the model, but later versions of the stepping 
subroutines will permit the friction coefficient to vary with 
position. Also it is intended to supply a version using (d+n) in 
place of d in the denominators of (4), in order to simulate fluid 
behavior in very shallow water more accurately. By design, these 
stepping subroutines are readily interchangeable, so that variations 
on the underlying finite-difference scheme can be tried in the same 
model with negligible reprogramming. It would be possible to write a 
master stepping subroutine containing all options likely to be 
required, but this would be less economical in computing time. 
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The terms G(") and G(V) in equations (1) - (3) represent 
relevant forcing effects due to external influences. In general these 
will be both time- and space-dependent. Appropriate values for these 
must be specified for the particular problem considered through a 
user-provided subroutine. 

3.   The Richardson-Sielecki   Finite-Difference Scheme 

The simple Richardson grid shown in Figure 1 was chosen as the 
basis for the finite-difference scheme because it minimizes storage 
requirements and permits particularly simple simulation of coast- 
lines. At interior points of the grid, equations (1) to (3) are 
represented by Sielecki 's  (1968) scheme. 

'Hj "   n^ _     (du +di+1J)Vl,j  -(Vij + dij»i 
At 2.AX 

(d..+ d.   .   ,)v.   .   ,  -  (d.   .  ,  + d..)v.. 
-      *"J      1 »J+1    1 >J + 1 1 'J-1        ]J    TJ 

2.Ay 

(5) 

1LU1    =  - g    nij  " *U1'*   + fv       -  F(u)  +  G(") (6) 
At AX ij        lj ij 

IlLlllA    =  - g    nij   " ^J-1  - fu' - F(v)  + G(») (7) 
At Ay ij       ij ij 

where 
At  = time  step 

AX,Ay  = grid interval   sizes  in  in  x,y directions  respectively 
d-j j  = mean water depth at elevation point n-jj 

1 
i,j-l + ul+l,j-l + uij  + ui+l,jl 

vij =7 tvi-l,j + vij + Vi-U+1 + vi,j + ll 

Primes indicate variables updated during the current time step; 
unprimed variables are those evaluated at the previous step. The use 
of old (unprimed) values of v in the Coriolis term in (6) and new 
(primed) values of u in the corresponding term in (7) eliminates the 
need to store any but the most recently updated values of each 
variable, provided that the equations are applied in the order given, 
that is, at each time step, all nij are updated, then all of the 
u-jj, and finally all the v-j j.   The same conclusion applies if 
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evaluated in the order n>v,u, using old values of u in the v-equation 
and new values of v in the u-equation. To reduce possible bias, the 
stepping subroutines provided evaluate the variables in the order n', 
u', v', on odd-numbered steps and n'» v',u', on even-numbered steps. 

Sielecki showed that the condition for stability of the above 
scheme, in the absence of boundaries, is 

At < **i*y  (8) 
- [9dmax(Ax2 + Ay

2)]V2 

4. Numerical Coding of Model Geometry 

The choice of grid for a model is necessarily a compromise among 
many requirements. The location and orientation of the grid is 
influenced mainly by the accuracy with which the coastlines can be 
approximated by line segments of the grid. This fit can usually be 
improved by increasing the grid resolution, which implies using more 
variable points and taking shorter time steps to maintain numerical 
stability, thus raising computing costs. Once the grid has been 
chosen, as objectively as possible, all variable points on the grid 
are allotted appropriate (primary) integer codes. An elevation point 
n -,- -; is given the code number (KE)-jj = 1 if the point lies on a 
sea-boundary along which surface elevation is to be specified as a 
function of time; any other elevation point has the code (KE)-jj = 0. 

Points on the grid where velocity components u-jj or v-jj are 
defined are each allotted a corresponding subscripted code (KU)-jj or 
(KV)-jj which can  have the following values: 

Primary codes KU.KV Location of Velocity Point 
at Velocity Points 

1 on line segment representing land boundary 
(coastline or island) 

2 on line segment representing spit or causeway 
with water on both sides 

3 at sea boundary where velocity is to be 
specified 

4 on radiating sea boundary (discussed below) 

0 elsewhere 

The allocation of these codes will now be illustrated with the 
aid of the very simple example in Figure 2(a). Here, the velocities 
ul 1 > U12> U13 on *ne sea-boundary at the left side and vm, vsi at the 
bottom edge of the grid are specified functions of time derived from 
current meter observations. Elevations n , n71> n7u 

at the 
right-hand sea boundary are also known functions of time, obtained 
from water level gauges. 

The upper boundary on which points v ,v  are located is a 
4 6  56 
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Fig. 2.  Sample Water Body and Primary Codes 
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radiating sea boundary. Where there are good grounds for assuming 
that no waves enter the model area from an adjacent water body, it is 
appropriate to use a radiation condition on the sea boundary between 
the two. This permits waves reaching the sea boundary from the 
interior of the model to pass out of the model domain. 

When choosing the model grid initially, radiating sea boundaries 
parallel to the x-axis of the model should be placed to run through 
v-points on the grid (as illustrated in Figure 2). Similarly, those 
parallel to the y-axis should run through u-points. It is assumed 
that the radiation problem can be treated one-dimensionally at each 
velocity point on the sea boundary and thus that the surface elevation 
and normal velocity at the boundary are related by 

outward normal velocity = (g/d)l/2 x elevation 

Since there are no elevation points actually on the boundary, the 
nearest interior elevation value is taken instead, so that the 
formulas used in the stepping subroutines for u-points on radiating 
boundaries facing in the positive or negative x-direction are 
respectively: 

"ij = (9/di-i,j)1/2 . nui.j 
or 

Uij = - (g/d-j j )!/2 . nij 

Similarly, at radiating sea boundaries facing in the positive or 
negative y-directions,  the formulas used are respectively: 

vij  = (9/di,j-l)1/2 • ni.j-i 
or 

vij  = - (g/d-j j )1/2    . nij 

For example, in the model shown in Figure 2, at each time step, 

the new velocity values v , v , on the radiating boundary are 
4 6   56 ii 

found from the newly-updated elevations n 5> n  by putting 

\6 = (g/d,5)
1/2 • <5;  v;6 = (g/d55)i/2. n;5 

This simple but effective radiation condition was introduced by 
Heaps (1974). In practice, transmission across the boundary is nearly 
complete for waves impinging normally on the boundary, but there is 
considerable unwanted reflection when the angle of incidence exceeds 
45°. Tests show that use of the radiation condition can reduce the 
permissible time step by as much as 50%.   Equation (8) should 
therefore be amended to 

At 
AX. Ay 

2fgd      Ux2 + Ay2)]1/? 
max 
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to ensure stability in models using the above type of radiating 
boundary. 

There is to be no flow across any 'land' boundary in the model 
and consequently, all the corresponding velocity components, e.g. U34, 
u 6i> V

H> 
v2<t> are t0 be set at zero. Also, v22 is zero, as there 

can be no transverse flow at the line segment representing the small 
island where v22 is situated. 

The arrays of numerical codes which describe the geometry of this 
model, according to the list given above, are shown in Figures 
2(b),(c) and (d). This coding stage of the procedure is represented 
by box A in Figure 3, which shows the sequence of preparatory steps 
required for a model. Currently, a file containing the numerical code 
arrays has to be prepared by the modeller, but work is in progress 
using interactive graphics (E in Figure 3) to replace manual entry. 
The coastlines and superposed grid are displayed and the grid segments 
which are to represent boundaries are then selected and designated 
using a cursor or light pen. The nature of each boundary is entered 
at the same time through the keyboard. However, manual entry of the 
primary codes, which will remain necessary in the absence of suitable 
graphics hardware, is very straightforward, due to the limited number 
of codes involved and the provision of a program for graphical 
checking. The latter requires only an off-line graphics facility. 

5. Graphical Check of Primary Codes 

Correct description of the location and types of the model 
boundaries is of such obvious importance that a program has been 
developed for plotting the model layout defined by the allocated 
primary codes. The plotting scale used can be set equal to that of 
the chart on which the model grid was set out, so that by overlaying 
the plot on the chart the correctness of the numerical coding can be 
checked very readily. It is also worthwhile repeating this graphical 
check (C in Figure 3) whenever changes are made to the primary codes, 
for whatever reason. 

Figure 4 shows the plot thus produced from the primary codes 
given in Figures 2 (b), (c) and (d). The boundaries are distinguished 
by use of the following line codes: 

  closed boundaries 

  spit or causeway 

- •• sea boundary with specified variable 

  radiating sea boundary 

The plotting program uses standard CALCOMP plotting subroutines. 

6. Conversion from Primary to Intermediate Codes 

Although the primary codes describe fully the location and type 
of every boundary, they do not contain certain information about 
relative locations required by the time-stepping finite-difference 
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Fig. 4.  Layout of Sample Model as Plotted from Primary Codes 
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subroutines. For this reason, another program is used (B in Figure 3) 
to convert the primary codes into a more numerous set of 
'intermediate' codes. The latter distinguish, for example, between 
inactive variable points on land (or outside the model domain) and 
active points in the model interior. The primary to intermediate 
conversion program also works out the bounds of the area of grid 
containing active variable points, thus reducing the amount of 
computation required in the time-stepping subroutines at each 
time-step. Users generally need not concern themselves with details 
of the intermediate codes and scanning bounds. 

Boxes G and H and Fig. 3 refer to programs being developed to 
permit substitution of a stepping subroutine based on the full 
non-linear shallow-water equations in place of the partly linearized 
versions presently available. An even fuller set of codes, here 
termed 'secondary', are required in that case to cope with the variety 
of special cases which occur in the vicinity of boundaries. 

7. Programming a Model 

After the above preparatory stages of coding, checking and code 
conversion have been carried out, one proceeds very much as in 
programming a model by the usual direct method, except that the 
intricate programming of the finite-difference calculations is 
replaced by a simple call to the appropriate time-stepping 
subroutine. The other major difference is that time-dependent forces 
and boundary values are supplied at each time-step by calling a 
subroutine which loads specific storage locations with this data, 
rather then by summoning values directly where required in the 
finite-difference coding. 

It is useful to visualize the linear arrays used to store 
boundary values as lying parallel to the boundaries on which the 
values are used, as shown in Figure 5, which refers to the simple 
example of Figure 2. By having each array the same size as its 
respective side of the model grid, the same numbering can be used for 
both. Thus in the example, the values to be supplied at each step for 
ujj are stored in (BL)j, j = l,2,3; those for v-j j, in (BB)-j , 

i = 4,5 and those for n7j in (BR)j, j=2,3,4. The storage arrays, 

which are a fixed feature of the time-stepping subroutines, can be 
used for holding elevation or velocity values as required for the 
model in question. Cases where this storage arrangement could lead to 
values for two different boundary points being allotted to the same 
storage location hardly ever seem to occur in practice and have not 
been catered for. Values supplied by the user at each time-step for 

the forcing terms G(
U
) and G(

V
) (equations 2 and 3) at every 

relevant variable point are stored in two-dimensional arrays where 
they are subsequently accessed by the stepping subroutine. 

Some of the storage locations just discussed go unused in most 
models - for example, none of the boundary storage array BT pertaining 
to the upper boundary in Figure 5 is used - but this is a reasonable 
price to pay for other conveniences of the method. 



TIDES AND LONG WAVES SIMULATION 215 

BT 

6 

5 

4 
BL 

J 3 

~tl 
-II ! 

  

1 

r II 
II 

2 
II 

_ll 
1 

1 
I  = X = 

• — 
BB 

1      2 3     4      5      6     7 
I 

BR 

Fig. 5.  Storage of Boundary Input Values for Sample Model 
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Fig. 6.  Typical Model Flowchart 
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Figure 6 shows a simplified flowchart suitable for many models. 
The conversion from primary to intermediate code is shown included in 
the model program, since in many cases, modellers make numerous 
boundary changes during model development. Some further details are 
given in Henry (1982) and the results of an actual run with the model 
shown in Figure 2 are listed there for check-out purposes. 

8. Further Developments 

Besides extensions already mentioned, a number of auxiliary 
programs are being developed, mainly for performing standard analyses 
of results from production runs with the completed model. For tidal 
studies there is a program which carries out harmonic analysis of 
computed currents and surface elevations, while for storm surge models 
another program is being developed to log the maximum height reached 
at each elevation point during any specified period. Since the model 
shape is already expressed in the primary codes, the latter are used 
to confine the analysis computations to active variable points, to 
organize the layout of printed results of the analyses, and also to 
produce plots of the boundaries in subsequent graphical programs, such 
as one which can contour any designated scalar field computed during 
the analysis. 

9. Conclusions 

The method of programming shallow water models discussed in this 
paper is designed to answer a need for rapid, error-free application 
of well-known finite-difference methods to different coastal areas. 
The basic concept involved, indirect programming or selection of 
algorithms via numerical codes, has attracted interest for a number of 
years but has not come into widespread use. This paper proposes some 
improvements which should help to make indirect programming into a 
really practicable tool. These include: 

a) the number of different numerical codes needed to describe 
the model layout is kept very small, the more numerous set 
of codes required to control the finite-difference 
computation being produced automatically by a pre-developed 
program; 

b) the user's choice of codes to define the layout is checked 
graphically for errors; 

c) the finite-difference scheme employed can be changed by 
replacing one subroutine by another. 
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