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1 INTRODUCTION 

This paper aims to put forward a case in favour of a simple discrete- 
time model describing mixing in an estuary.  The model derives from 
the remarkably simple concepts developed by Ketchum (1951 a,b) which 
describe mixing in terms of tidal prism exchanges between segments. 
The author's view is that Ketchum1s ideas were abandoned before they 
were fully explored.  A major factor was the advent of the high-speed 
computer which opened up the possibility of using an approach based on 
the space-time formulation of the problem in terms of the partial 
differential equations of transport theory. 

Intrinsically this approach, based on a continuum description, is more 
attractive than a gross description based on relatively large segments: 
one obvious reason is the possibility of providing a comprehensive 
space-time prediction of the spread of a pollutant.  In practice, 
though, significant problems arise in its use:  in particular, the 
following can be mentioned - 

a) substantial computing costs relating to computer program 
development and machine time 

b) specification of transport parameters inherent in the partial 
differential equations of transport:  for example, dispersion 
coefficients 

c) model validation and state/parameter estimation. 

The last of these is the primary concern of this paper. It is probably 
true to say that, to date, too little attention has been given to these 
topics, in the context of estuarine modelling. The point to be made is 
that there is small justification in using a sophisticated description 
of a system if the resulting predictions of the model cannot be effect- 
ively validated. 

The ideas used in this paper stem from those put forward by Beck and 
Young (1975) in studies on non-tidal river pollution.  The subsequent 
discussion suggests an extension to estuarine systems-. 

2 BASIS OF THE PROPOSED KODEL 

A complete description of the proposed model can be found in the 
published paper by Wood (1979).  Only the essentials relevant to the 
subsequent discussion in this paper are presented here, namely, the 
segmentation procedure and the exchanges between segments. 
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2.1 Segmentation 

The estuary is segmented sequentially from the fresh water end. 
Segment (1) is always fresh; thereafter a progressive increase in 
salinity takes place through segments (2), (3), ....,(n).  The high 
tide volumes H-^, and the low-tide volumes Li, are determined from the 
fresh water input R per tidal cycle (assumed known) and the hydrography 
of the estuary, as follows 

(la) 

L. = H. . (lb) 
l    l-l 

Thus, except for segment (1), the low-tide volume of any segment is 
equal to the high-tide volume of its upstream neighbour. 

2.2 Exchanges Between Segments 

As a consequence of the chosen segmentation procedure, water is 
exchanged over a tidal cycle between a segment and its nearest 
neighbours.  Thus the high-tide volume, H^, of segment (i) is 
distributed over a tidal cycle, as follows - 

v. , .  : the volume transferred to segment 
'     (i-1) from segment (i) 

v. .    : the volume returned to segment (i) 

v.,. .  : the volume transferred to segment 
'     (i+1) from segment (i) 

Each volume of water carries with it the salinity, s-^, of its origin. 
Therefore, from one high-tide to the next, the discrete-time model 
describing salinity distribution changes is as follows - 

H. s.(k)=v. . ,s. 1(k-l)+v. . s.(k-l)+v. .,ns.,n (k-1) l  x     i,i-l i-l '1,1  1 1,1+1 1+1 

(2) 
where i = 2 to n - 1 
and k is a time index based on a tidal cycle. 

3 STATE/PARAMETER ESTIMATION 

The principal point to be made in this paper is that the discrete-time 
model proposed in the previous section is directly amenable to the 
techniques of state and parameter estimation formulated by^ Kalman (1960). 
The mathematical background is too extensive to be discussed here and, 
indeed, the main purpose is to demonstrate what can be achieved by 
using these techniques, rather than to put forward an exposition of the 
mathematics per se.  Excellent accounts are available in texts by 
Eykhoff (1974) and Jazwinski (1970). 
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3.1 The Defining Equations 

The following equations describe the change in the state vector of 
salinity, JB, at discrete-time intervals and the relationship between 
the vector of salinity measurements, z_, and the salinity vector - 

Model Equation:      £ (k+1) = T.s(k) + n(k) (3a) 

Measurement Equation: z^(k) = M.js(k) + e^(k) (3b) 

s_: (nxl) vector describing salinity distribution 
T: (nxn) matrix describing exchanges between segments 
n: (nxl) vector of model error (Gaussian) 
z} (mxl) vector of measured salinities 
M: (mxn) matrix relating measurement to salinity 
e_: (mxl) vector of measurement error (Gaussian) 
k: an index of discrete-time 

3.2 The Kalman. Filter:  State Estimation 

The Kalman Filter provides an estimate of the salinity vector at each 
time interval, based upon the measurements received up to that time. 
The procedure is recursive in that an updated estimate can readily be 
made each time new measurement information is received, based on the 
previous estimate and the new information. This scheme of sequential 
updating of estimates is particularly well suited to a system which 
is monitored in a regular way. 

Kalman?s solution to the problem of recursive state estimation assumes 
that the statistical properties of the vectors n(k) and e^(k) , 
representing system and measurement noise respectively, are known and 
described by - 

E[ n(k) ] = E [e(k)]  = 0 
1 

E[ n(k) n(j)] = Q 6, . 
1       k3 

E[ e(k) e(j)] = R °kj (3c) 

E[ n(k) e(j)] =0 for all k,j 

The following two-stage filter estimation algorithm can now be deduced 

Stage 1 - Prediction 

£(k,k-l) = T £(k) 

P(k,k-1) = T P(k-l) T + Q 



ESTUARIES DISPERSION MODELING 3081 

Stage  2 - Correction 

A 1 1 i 
s.(k)  = £(k,k-l) + P(k,k-1)  M [M P(k,k-1)  M + R] [z_(k)-M s^ (k,k-l)] 

1 1 -1 
P(k)  = P(k,k-D - P(k,k-1)  M [M P(k,k-1)  M + R]        M P(k,k-1) 

(3c) 

where s/k,k-l) is the first-stage estimate of the salinity distribution, 

previous estimate s/k-1) 

P(k,k-1) is the covariance matrix of the estimation error with 

£(k,k-l) 

j?(k)    is the second-stage estimate, based on the first-stage 

estimate s^(k,k-l) and the latest measurement information 

z(k) 

P(k)    is the covariance matrix of the estimation error 

associated with s/k) 
-I 

The second-stage estimates j3 (k) , P(k) for the kth time instant are 
therefore based on the complete data set collected between instants 1 
and k. 

3.3 The Extended Ealman Filter: State-Parameter Estimation 

In many practical problems, the matrix appearing in the model equation 
cannot be specified because some of its elements are unknown.  In the 
context of the dispersion model, the T matrix describing the exchanges 
between segments contains unknowns which have to be estimated from 
salinity measurements.  The estimation problem then extends to the 
unknown parameters of the T matrix as well as the state vector of 
salinities mentioned in the previous section.  The approach adopted 
essentially involves reformulating the defining equations (3a) and (3b) 
in terms of an augmented vector which contains as its elements the 
salinity vector elements and the unknown parameters.  A simple example 
in the next section demonstrates the principle but for a comprehensive 
account of the technique the reader should consult the references 
previously mentioned,  Eykhoff (1974) and Jazwinski (1970). 

4  SIMPLE EXAMPLE OF THE APPLICATION OF STATE/PARAMETER ESTIMATION 

A simple 4-segment example is used to demonstrate the use of the 
proposed discrete-time model and the application of the Kalman filter. 
Segment (1) is completely fresh at all times and segment (4) is 
completely saline at all times (s, = 0, s^ = 1 all values of^ k).  The 
transition matrix, T, in equation (3a) is - 
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1 0 0 0 

t21 C22 '23 
0 

0 
'32 '33 

t 

0 0 0 1 

34 

where t. . = v../H. 

Various categories of problem can be analysed, as described below. 

4.1  State Estimation Only (all elements of T known). 

4.1.1 Segments (2) and (3) monitored. 

The Kalman filter provides estimates s„(k), s  (k) of the salinities 

in segments (2) and (3) from a sequence of monitored salinities z9 (p), 

z., (p) , for p = 1 to k. The measurement matrix, M, is 

0 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 0 

4.1.2. Either segment (2) or segment (3) monitored. 

The Kalman filter provides estimates s,(k), s,(k) from a sequence of 

monitored salinities: either z_ (p) or z. (p), for p = 1 to k. The 

measurement matrix, M, is - 

0 0    0 0 -0    0    0 0 

either 
0 

0 

1    0 

0    0 

0 

0 
or 0    0    0 

0    0    1 

0 

0 

0 0    0 0 0    0    0 0 

Segment C2) monitored Segms ;nt (3) monitored 



ESTUARIES DISPERSION MODELING 3083 

4.1.3 A numerical example of state estimation 

Consider a system with a T matrix specified as - 

1 0 0 0 

0.5 0.3    ' 0.2 0 

0 0.35 0.45 0.2 

0 0 0 1 

Let the covariance matrices Q, R representing the system noise and 
the measurement noise, respectively, be - 

Q = R = 

0 0               0 

4xl0~4 0               0 

0 4xl0"4    0 

0 0                0 

Then, given a set of monitored salinities at successive sampling 
instants k = 1,2 10, for segments (2) and (3), the recursive 
estimates for the true salinities s ,s can be obtained using the 
Kalman Filter algorithm.  Table 1 summarizes the results. 
TABLE 1 , 

k     z„       s„ P22X1° 
P33xl0 

1 0.526 0.499 3.94 1.02 1.02 0.398 

2 0.358 0.326 0.626 0.753 0.775 0.289 

3 0.254 0.252 0.470 0.660 0.661 0.237 

4 0.197 0.209 0.451 0.594 0.590 0.226 

5 0.225 0.183 0.448 0.561 0.551 0.225 

6 0.179 0.162 0.447 0.480 0.494 0.224 

7 0.162 0.150 0.447 0.504 0.493 0.224 

8 0.134 0.146 0.447 0.503 0.491 0.224 

9 0.073 0.138 0.447 0.426 ft. 446 0.224 

10 0.130 0.134 0.447 0.476 0.470 0.224 

k       is the discrete sampling time index, based on an interval of 
a tidal cycle 

z„,z„   are the monitored salinities in segments (2),(3) (relative 
to sea water as unity). 

°2' 3 are the filtered estimates of the relative salinities in 
segments (2),(3). 

P„„,P,,  are the variances associated with the filtered estimates. 
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4.2  State/Parameter Estimation (some elements of T unknown) 

4.2.1 Dimension of the problem 

Although it would appear that there are six nonzero elements to be 
specified in the T matrix, only two need, in fact, to be estimated. 
The element t21 is fixed by the fresh water flow from segment (1) to 
segment (2).  Also the following relationship for the exchanges 
between neighbouring segments leaves only two elements unknown - 

H.=v. . . + v. . + v. .,, = v.-. . + v. . + v.,. .     ,,, 
i   1,1-1   1,1   1,1+1   1-1,1   1,1   1+1,1    (4) 

where i = 2 to n - 1 

Therefore in the 4-segment example there are two states and two 
parameters to be estimated: s„,§,,!„„>t,,. 

4.2.2 The augmented state vector, 

T 
The state vector (0 s  s  1)  is augmented with the two unknown 

T 
parameters t  , t_, to yield (0 s s 1 t _ t,„) . Let the augmented 

vector be designated x-  The defining equations can then be reformulated 

as follows - 

Model Equation:       x(k+l) = T!x(k)+n'(k) (5a) 

Measurement Equation:  z.(k) = G!x(k)+e_'(k) (5b) 

The problem now becomes non-linear because some of the elements of T' 
contain elements of the augmented vector x.  After each estimate of the 
augmented vector x the matrix T' is accordingly updated.  Apart from 
this the Extended Kalman Filter follows the same algorithms as before, 
so that monitored salinities in segment (2) and/or segment (3) can 
provide recursive estimates of s„, s,, t„„ and t-,.,. 

4.2.3 A numerical example of state/parameter estimation 

As explained above, the T matrix contains effectively two unknown 
elements, and these are to be estimated in addition to the salinity 
values in segments (2),(3).  The T matrix itself must therefore be 
updated at the beginning of each cycle of the Kalman Filtering process, 
using the best available estimates for £ ., £_,.  At the beginning of 
the calculation, the initial values for the elements of the augmented 
vector x and its associated error cavariance matrix P must be guessed. 

Consider a system with noise covariance matrices Q, R (for the model 
and measurements respectively), as follows - 

Q Matrix (diagonal terms):  0 

R Matrix (diagonal terms):  0 

(all off-diagonal terms are zero). 

9x10 4 9x10  4 0 0 0 

4xl0~4 -4 
4x10 0 0 0 
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Let the initial guesses for the augmented vector x and its associated 
error covariance matrix P, be as follows - 

x(0):   0    0.5    0.5 

P(0):  0   10     10 

1    0.5    0.5 

0   10  ,   10 

(diagonal terms only; off-diagonal terms zero) 

Table 2 summarizes the filtered estimates from a sequence of monitored 
salinity values z„, z., in segments (2), (3). 

TABLE 2 

k Z2 S2 t22 Z3 S3 t33 

1 0.483 0.483 0.316 0.961 0.961 0.368 

2 0.376 0.375 0.226 0.831 0.830 -0.287 

3 0.274 0.278 0.273 0.671 0.672 0.631 

4 0.188 0.199 0.292 0.609 0.603 0.495 

5 0.185 0.186 0.290 0.554 0.550 0.450 

6 0.166 0.168 0.290 0.567 0.557 0.401 

7 0.174 0.172 0.287 0.525 0.526 0.400 

8 0.190 0.183 0.278 0.518 0.518 0.393 

9 0.096 0.114 0.295 0.457 0.472 0.436 

10 0.142 0.139 0.292 0.458 0.457 0.432 

DISCUSSION 

The potential advantage to be gained from using a discrete-time 
modelling approach to dispersion studies in estuaries would appear to 
lie in the area of model validation, and in particular in state/parameter 
estimation.  The principal disadvantage is the trade-off of model 
accuracy, whereby the less rigorous, spatially segmented, discrete-time 
description is adopted in place of a continuum model in continuous time, 
in favour of a well-proven approach to system identification in the form 
of Kalman filtering.  Clearly, the issue is far from proven either way, 
and only a series of thorough assessments based on actual case studies 
will indicate which is the more fruitful approach. 

The principal merits of the discrete-time model are related to the 
principal features of the Kalman Filter, as follows - 

a) The procedure is recursive whereby the latest estimates are obtained 
from the most recent estimates and the latest available measurement 
information. 
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b) The Kalman Filter algorithms incorporate measures of the uncertainties 
inherent in the model equations and the measured data. 

c) The method can be applied to a partially monitored system which is 
an important factor when resources of manpower and money are limited. 

d) The method provides a continuous updating of estimates and the errors 
associated with the estimates. 

e) The method offers a consistent approach to parameter estimation which 
is undoubtedly the key problem in modelling studies. 
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